پایان نامه تحلیل عددی ذخیره سازی انرژی گرمایی در مبدل های حرارتی با مواد تغییر فاز دهنده

word
112
21 MB
32619
1393
کارشناسی ارشد
قیمت: ۱۱,۲۰۰ تومان
دانلود فایل
  • خلاصه
  • فهرست و منابع
  • خلاصه پایان نامه تحلیل عددی ذخیره سازی انرژی گرمایی در مبدل های حرارتی با مواد تغییر فاز دهنده

    پایان‌نامه دوره کارشناسی ارشد رشته مهندسی مکانیک گرایش تبدیل انرژی

    چکیده

    ذخیره سازی انرژی گرمایی و مواد تغییر فاز دهنده جهت کاربرد در سیستم گرمایش و سرمایش ساختمان ها به موضوع مهمی در 20 سال گذشته تبدیل شده است. هنگامی که عدم تطابق میان تولید انرژی و زمان مصرف آن وجود داشته باشد مسئله ذخیره سازی انرژی اهمیت می یابد. در کار حاضر سیالی که در مبدل حرارتی  سه لوله ای در جریان است تحت تاثیر منبع گرما قرار میگیرد و این سیال سبب ذوب شدن ماده تغییر فاز دهنده ای می شودکه در حالت اولیه جامد است . در این پایان‌نامه به تحلیل عددی اثر سطوح گسترش یافته بر فرآیند ذوب پارافین  به منظور  کاهش اتلاف انرژی به صورت ناپایدار، دو بعدی ، با سیال  غیرقابل تراکم و جابجایی آزاد می‌پردازیم.  به منظور افزایش کارایی سیستم، پره های طولی درون مبدل حرارتی  قرار داده شده است. اثر تعداد ، ارتفاع و ضخامت پره ها و همچنین تغییر دمای سیال و جنس مبدل بر انتقال حرارت و فرایند ذوب پارافین مورد بررسی قرار گرفته است. نتایج نشان داد که با افزایش هر کدام از پارامترهای تعداد، ارتفاع وضخامت پره زمان ذوب ماده تغییر فاز دهنده کاهش می‌یابد که تاثیر تعداد و ارتفاع محسوس‌تر است. همچنین افزایش دمای سیال ورودی  باعث افزایش انتقال حرارت از سیال به ماده تغییر فاز دهنده شده که موجب بهبود ذخیره سازی انرژی در سیستم می‌گردد. به علاوه،  با بررسی  جنس های مختلف مبدل، سیستم مورد مطالعه نتایج بهتری را برای جنس مس نشان داد.

     

    کلمات کلیدی : تحلیل عددی ، مبدل حرارتی ، ماده تغییر فاز دهنده ، ذخیره سازی انرژی حرارتی .

    مواد تغییر فاز دهنده (PCM) چیست؟

    (Phase Change Material) PCM به مواد تغییرفاز دهنده گفته میشود. این مواد ترکیبات آلی یا معدنی هستند که قابلیت جذب و ذخیره پنهان مقادیر زیادی از انرژی گرمایی را درون خود دارند. ذخیره انرژی گرمایی در این مواد، در طی فرآیند تغییر فاز (تغییر حالت از جامد به مایع یا بالعکس) اتفاق میافتد. این مواد به هنگام تغییر فاز از جامد به مایع یا از مایع به جامد، این گرما را از محیط جذب نموده و یا به محیط پس می دهند. ماده تغییر فازدهنده قابلیت آن را دارد که این انرژی نهفته گرمایی را بدون هیچگونه تغییری حتی پس از هزاران چرخه تغییر فاز، درون خود حفظ نماید. این مواد در صورت استفاده در ساختمان، از طریق چرخه های متوالی ذوب و انجماد در تغییرات شدید دمای هوا (مثلا بین شب وروز)، مقادیر زیادی گرما را با محیط تبادل نموده و از این طریق دمای هوای متعادل تری را برای فضای داخل ساختمان تامین می نمایند]1[.

     

    1-2 تاریخچه استفاده از مواد تغییر فازدهنده:

     اولین گزارشها مبنی بر کاربرد این مواد در ساختمان از 1940 به صورت نوظهور مطرح شد. سپس استفاده از این مواد در ساختمان از دهه 1980 به صورت گسترده مورد مطالعه قرار گرفته و امروزه استفاده از آنها در صنعت ساختمان از جایگاه ویژه ای برخوردار شده است. این مواد را میتوان در ساختمان و در اجزایی مجزا برای کاربردهای گرمایش و سرمایش به کار برد از جمله کرکره ، دیوار رو به خورشید، تخته گچ، سیستمهای گرمایش کف و تخته های سقفی . همچنین بعد از جنگ جهانی دوم برای ساختن نخستین ذخیره کننده در خانه خورشیدی به عنوان PCM از این مواد استفاده شد.

    1-3 چگونگی عملکرد مواد تغییر فاز دهنده:

    مواد در طبیعت در سه فاز مایع، جامد و گاز وجود دارند. در صورتی که ماده ای از یک فاز به فاز دیگر تغییر حالت دهد، مقداری گرما را که گرمای نهان نامیده میشود، جذب یا آزاد مینماید. به عنوان مثال، یک ماده جامد پس از گرم شدن و رسیدن به نقطه ذوب خود، به جذب حجم بالایی از انرژی (که گرمای نهان ذوب نامیده میشود) پرداخته و حالت خود را از جامد به مایع تغییر میدهد. مواد تغییر فاز دهنده این خاصیت را دارند که حالت خود را در یک دامنه دمایی مشخص تغییر دهند، به این مفهوم که طی فرآیند تغییر حالت، دمای خود را برای طول مدت تغییر حالت حفظ مینمایند. در واقع، روش کار این مواد برای ذخیره انرژی گرمایی به این صورت است که طی فرایند گرم شدن محیط، به صورت موازی با محیط گرم میشوند تا زمانی که به دمای ذوب خود (تغییر فاز) برسند]2[.

    پس از رسیدن به این دما علیرغم اینکه دمای محیط همچنان به روند افزایشی خود ادامه میدهد، دمای این مواد و البته محیط اطراف آن به دلیل اینکه در حال تغییر فاز است، ثابت مانده و در برابر افزایش دما مقاومت مینماید. در واقع، طی این بازه زمانی که معمولاً چند ساعت نیز به طول می انجامد، ماده تغییر فازدهنده مقادیر زیادی از گرمای محیط را به خود جذب مینماید، ولی آن را صرف افزایش دمای خود نمیکند، بلکه این گرمای جذب شده را صرف تغییر فاز خود از جامد به مایع نموده و طی فرایند تغییر فاز، دمای خود و محیط اطراف خود را ثابت نگاه میدارد. این روند تغییرات دمایی و جذب انرژی گرمایی در شکل1-1 بخوبی قابل مشاهده است]3[. در منطقه مربع شکل سفید رنگ، فرآیند تغییر فاز در حال شکل گرفتن بوده و در همین منطقه است

    که انرژی گرمایی جذب شده توسط ماده درون  آن ذخیره می شود.

    (تصاویر در فایل اصلی موجود است)

  • فهرست و منابع پایان نامه تحلیل عددی ذخیره سازی انرژی گرمایی در مبدل های حرارتی با مواد تغییر فاز دهنده

    فهرست:

    فصل اول: مقدمه  1

    1- 1 مواد تغییر فاز دهنده (PCM) چیست؟. 2

    1- 2 تاریخچه استفاده از مواد تغییر فازدهنده 2

    1- 3 چگونگی عملکرد مواد تغییر فاز دهنده 2

    1- 4 خصوصیات مواد تغییر فازدهنده 4

    1- 5 انواع مختلف مواد تغییر فاز دهنده 5

    1- 6 فرایند تغییر فاز 7

    1- 7 کاربردهای مواد تغییر فازدهنده 9

    1-7-1.. کاهش نوسانات دمایی در داخل ساختمان 11

    1-7-2.. استفاده از ماده تغییر فازدهنده در سیستمهای خورشیدی 11

    1-7-3.. مواد تغییر فاز دهنده و کاربرد آنها در منسوجات.. 12

    1-7-3-1 فضانوردی.. 13

    1-7-3-2 البسه ورزشی.. 13

    1-7-3-3 لوازم خواب.. 13

    1-7-3-4 کاربردهای پزشکی.. 14

    1- 8 روش های ذخیره انرژی 14

    1-8-1. ذخیره انرژی مکانیکی 14

    1-8-2.. ذخیره انرژی الکتریکی 14

    1-8-3.. ذخیره انرژی گرمایی 14

    1-8-4.. ذخیره انرژی ترموشیمیایی 15

    1- 9 مواد تغییر فاز دهنده و ذخیره سازی انرژی 15

    1-9-1.. بازیافت اتلافات حرارتی در سیستم های تبرید تراکمی 18

    1-9-2.. بازیافت اتلافات حرارتی در ساختمانها و گلخانه ها 19

    1- 10........................................................................................................................................................................................ روشهای افزایش انتقال حرارت 20

    1-10-1............................................................................................................................................................................................................. میکروکانالها 21

    1-10-2.................................................................................................................................................................................. مواد افزودنی به مایعات   21

    1-10-3.......................................................................................................................................................................................... استفاده از نانو سیال 22

    1-10-4............................................................................................................................................................. استفاده از سطوح گسترش یافته 23

    1-10-5 استفاده از پره‌های مخلوط کننده 24

    1-10-6................................................................................................................................................................. افزایش انتقال حرارت گردابه‌ای 25

    1-10-7............................................................................................................................................................................................................................ تزریق 25

    1-10-8 مکش 25

    1-10-9...................................................................................................................................................... ایجاد انقطاع و شکستگی در جریان 26

    1-10-10 نوسان سطح و سیال 26

    فصل دوم :  مروری بر کارهای گذشته 27

    2-1. بررسی پیشینه کارهای انجام شده 28

    فصل سوم  مدل سازی و تحلیل نتایج   43

    3-1. مقدمه. 44

    3-2. شبیه سازی مسئله. 44

    3-2-1.. مقدمه ای بر دینامیک سیالات محاسباتی.. 44

    3-2-2.. مقدمه ای بر فلوئنت... 46

    3-2-3.. هندسه مسئله. 49

    3-2-4 شبکه بندی.. 51

    3-2-5.. حل مستقل از شبکه و حساسیت بازه زمانی.. 57

    3-3. معادلات حاکم در این تحقیق.. 61

    3-3-1.. شرایط مرزی و اولیه. 62

    3-4. اعتبار سنجی.. 63

    3-5. بررسی نتایج.. 66

    3-5-1.. بررسی اثر تعداد پره ها 66

    3-5-2  بررسی اثر ارتفاع پره ها 70

    3-5-3.. بررسی اثر ضخامت پره ها 74

    3-5-4  بررسی اثر جدا نمودن ماده تغییر فاز دهنده توسط پره ها 78

    3-5-5.. بررسی اثر تغییرات جنس مبدل.. 82

    3-5-6... بررسی اثر تغییرات دمای سیال  86

    فصل چهارم: نتیجه‌گیری و پیشنهادات   91

    4-1. نتیجه‌گیری.. 92

    4-2. پیشنهادات برای ادامه کار 93

    مراجع   95

     

    منبع:

     

    [1] Kinga Pielichowska, Krzysztof Pielichowski, Phase change materials for thermal energy storage, Progress in Materials Science 65 (2014) 67–123.

    [2] Lane G. A., Solar Heat Storage: Latent Heat Materials, Boca Raton, Florida: CRC Press Vol. I. 1983.

    [3] Lane, G. A., Phase Change Thermal Storage Materials, the Handbook of Applied Thermal Design, ed. McGraw-Hill, New York 1987.

    [4] Marco, I., 2005. Seminar on phase change materials and innovation products. Brianza Plastica. Beijing, China, October 20, Tsinghua University.

    [5] Sharma SD Thermal energy storage systems using phase change material for temperature application. Ph.D. thesis 1999.

    [6]Zalba B, Testing of a PCM energy storage system for space heating. International Journal Refrig 2004;27:839-49.

    [7] Belen Zalba , Jose Ma Marın , Luisa F. Cabeza ,Harald Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Applied Thermal Engineering 23 (2003) 251–283.

    [8] Belen Zalba,Belen Sanchez-valverde,Jose Marin, An experimental study of thermal energy storage with phase change materials by design of experiments, Journal of Applied Statistics ; 32(4):321-332.

    [9] Zhang, Y., Lin, K., Zhang, Q., Di, H. 2006. Ideal Thermophysical Properties for Free-Cooling (or Heating) Buildings with Constant Thermal Physical Property Material. Energy and Buildings, 38, 1164–70.

    [10] Zhang, Y., Zhou, G., Lin, K., Zhang, Q., Di, H., 2007. Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook. Building and Environment, 42, 2197–2209.

    [11] Zhou, G., Zhang, Y., Lin, K., Xiao, W. 2008. Thermal Analysis of a Direct-Gain Room with Shape-Stabilized PCM Plates. Renewable Energy, 33, 1228–1236.

    [12] Zhang Y., Chen Z., Wang Q., Wu Q., Melting in an enclosure with discrete heating at a constant rate, Experimental Thermal Fluid Scince 6 1993 196–201.

    [13] Lehmann P., Moreau R., Camel D., Bolcato R., Modification of interdendritic convection in directional solidification by a uniform magnetic field, Acta Materialia, 46 1998 4067-79.[14] Abhat, A., 1983. Low temperature latent heat thermal energy storage: heat storage materials. Solar Energy, 30, 313–332.

    [15] Ng K. W., Gong Z. X., Mujumdar A. S., Heat transfer in free convection-dominated melting of a phase change material in a horizontal annulus, Int Communicatin Heat Mass Transfer 25 1998 631–40.

    [16] Jellouli Y., Chouikh R., Guizani A., Belghith A., Numerical study of the moving boundary problem during melting process in a rectangular cavity heated from below, Am J Appl Sci,4, 2007, 251–6.

    [17] Huseyin Benli, Aydın Durmus, “Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating”, Solar Energy  , 2009.

    [18] Kenisarin M., Mahkamov M., Solar energy storage using phase change materials, Renewable and Sustainable Energy Reviews 11 2007 1913-65.

    [19] الهام فلاحی ، محمد حقیقت کیش ، محمد برمر, کاربرد مواد تغییر فاز دهنده (PCM) در نساجی, ششمین کنفرانس ملی مهندسی نساجی ایران، 18 تا 19 اردیبهشت 1386 , دانشگاه صنعتی اصفهان- دانشکده مهندسی نساجی.

    [20] میلاد ملکی پیربازاری ، سید مجتبی صدرعاملی ، حامد شریفی ، محمد واعظ ، صفا فرج زاده, بررسی مواد تغییر فاز به عنوان سیستم ذخیره سازی انرژی حرارتی جهت گرمایش و سرمایش ساختمان,  اولین کنفرانس سالانه انرژی پاک مرکز بین المللی علوم و تکنولوژی پیشرفته و علوم محیطی 4 و 5 اسفند ماه 1389 کرمان

    [21] Tewari S. N., Shah R., Song, H., Effect of magnetic field on the microstructure and macrosegregation in directionally solidified Pb-Sn alloys, Metallurgical and Materials Transactions A 25 (7) 1994 1535-44.

    [22] آلان غلام ویسی , نقش مواد تغییر فاز دهنده  (PCM ) در بازیافت انرژی, اولین همایش و نمایشگاه تخصصی محیط زیست , انرژی و صنعت پاک, تهران 1387

    [23] Farid, M.M, Khudhair, A.M, Razack, S.A.K, Al-Halliaj, S.A, (2004), “A review on phase change energy storage materials and applications”, Energy Convers. Manage, Vol.45, pp. 1593-1615;

    [24] Agyenim.F, Neil Hewitt, Philip Eames, Mervyn Smyth ,(2010), “A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)”, Renewable and Sustainable Energy Reviews, 14, 615-628.

     

    [25] Antony Aroul Raj.V, Velraj. R. (2011), “Heat transfer and pressure drop studies on a PCM - heat exchanger module for free cooling applications”, International Journal of Thermal Science, 1-10.

    [26] H. Huseyin Ozturk, “Experimental evaluation of energy and exergy efficiency of a seasonal latent heat storage system for greenhouse heating”, Energy Conversion and Management,Vol. 46, pp.1523–1542,2005.

    [27]V.P. Sethi , K. Sumathy, Chiwon Lee, D.S. Pal, Thermal modeling aspects of solar greenhouse microclimate control: A review on heating technologies, Solar Energy 96 (2013) 56–82.

     [28] J. Lee, I. Mudawar, “Assessment of the effectiveness of nanofluids for singlephase and two-phase heat transfer in micro-channels”, International Journal of Heat and Mass Transfer, Vol. 50, pp. 452–463, 2007.

    [29] J. C. Maxwell, “Treatise on Electricity and Magnetism”,2th edition Clarendon Press, Oxford, UK, 1881.

    [30] M.Tamari, and K. Nishikawa, “The stirring effect of bubbles upon the heat transfer to liquids”, Japan Research of Heat transfer, Vol. 5, pp.31-39. 1976.

    [31] S. U. S. Choi, “Enhancing Thermal Conductivity of Fluids with Nanoparticles, Developments and Applications of Non-Newtonian Flows”, D. A. Siginer, and H. P. Wang, eds., The American Society of Mechanical Engineers, New York, FED-Vol. 231 / MD-Vol.66, pp. 99-105, 1995.

    [32] M.E. Conner, E.Baglietto and A.M. Elmahdi, “CFD methodology and validation for single-phase flow in PWR fuel assemblies”, International Journal of Heat and Mass Transfer, Vol. 50, pp. 2088–2095, 2010.

    [33] A. E. Bergles, “Techniques to Enhance Heat Transfer, in Handbook of Heat Transfer”,3rd ed., (Rohsenow W. M., Hartnett, J. P., and Cho, Y. I., eds.), McGraw-Hill, New York,Chap. 11, 1998.

     

     

     [34] بهزاد عبدالملکی ، محسن پرور ، علی کاوسی نژاد ، بازیافت اتلافات حرارتی با استفاده از مواد تغییرفازدهنده در مبدلهای حرارتی ، کنفرانس ملی تجاری سازی, توسعه ملی و علوم مهندسی ، استان مازندران- ساری, 24 مرداد ماه  1392

     

    [35] Ravikumar. M., Srinivasan, PSS., 2008. Phase Change Material as a Thermal Energy Storage Material for Cooling of Building. Journal of Theoretical and Applied Information Technology, 503-511.

    [36]Y.Nashina, R.K.Takahira, “Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating”, Solar Energy  , 2009.

    [37]Sayoto. DF , Herwits .RJ PCM thermal storage in buildings: A state of art . Vol13 .pp 123 127

    [38]Biyezli. Z, Ramanaroyan. F, Modeling of Phase change material Peak Load Shifing,. Energy and building. No.39 pp.289-305

    [39] M. Labat, J. Virgone, D. David, Kuznik F, Experimental assessment of a PCM to air heat exchanger storage system for building ventilation application, DOI: 10.1016/j.applthermaleng.2014.02.025.

    [40] A.H. Mosaffa, F. Talati , H. Basirat Tabrizi, M.A. Rosen, Analytical modeling of PCM solidification in a shell and tube finned thermal storage for air conditioning systems, Energy and Buildings 49 (2012) 356–361.

    [41] Pablo Dolado, Ana Lazaro, Jose M. Marin, Belen Zalba, Characterization of melting and solidification in a real scale PCM-air heat exchanger: Numerical model and experimental validation, Energy Conversion and Management 52 (2011) 1890–1907.

    [42] Yi-Hsien Wang, Yue-Tzu Yang, Three-dimensional transient cooling simulations of a portable electronic device using PCM (phase change materials) in multi-fin heat sink, Energy 36 (2011) 5214-5224.

    [43] S.M. Shalaby , M.A.Bek , A.A.El-Sebaii, Solar dryers with PCM as energy storage medium: A review, Renewable and Sustainable Energy Reviews33(2014)110–116.

    [44] Elisa Guelpa, Adriano Sciacovelli, Vittorio Verda, Entropy generation analysis for the design improvement of a latent heat storage system, Energy 53 (2013) 128-138.

    [45] Lamberg P., Siren K., Analytical model for melting in a semi-infinite PCM storage with an internal fin, Heat and Mass Transfer 39 2003167–76.

    [46] Lamberg P., Lehtiniemi R., Henell A. M., Numerical and experimental investigation of melting and freezing processes in phase change material storage, International Journal of Thermal Science 43 2004 277–87.

    [47] Stritih U., An experimental study of enhanced heat transfer in rectangular PCM storage, International Journal of Heat and Mass Transfer 47 2004 2841–47.

    [48] Regin A. F., Solanki S. C., Saini J. S., Latent heat thermal storage using cylindrical capsule:numerical and experimental investigations, Renewable Energy 31 2006 2025– 41.

    [49] Jones B. J., Sun B., Krishnan S., Garimella S. V., Experimental and numerical investigation of melting in a cylinder, Intnational Journal of Heat and Mass Transfer 4 2006 2724–38.

    [50] Akgun M., Aydin O., Kaygusuz K., Experimental study on melting/solidification characteristics of a paraffin as PCM, Energy Conversion and Management 48 2007 669– 78.

    [51] Bahrami P. A., Natural melting within a spherical shell, NASA Technical Memorandum, 1990.

    [52] Ettouney H., El-Dessouky H., Al-Ali A., Heat transfer during phase change of paraffin wax stored in spherical shells, ASME Journal of Solar Energy Engineering 127 2005 357–65.

    [53] Reddy K. S., Thermal modeling of PCM-based solar integrated collector storage water heating system, ASME Journal of Solar Energy Engneering 129 2007 458–64. 186

    [54] Akhilesh R., Balaji C., Narasimhan A., Method to improve geometry for heat transfer enhancement in PCM composite heat sinks, International Journal of Heat and Mass Transfer 48 2005 2759–70.

    [55] Gharebaghi M., Sezai I., Enhancement of heat transfer in latent heat storage modules with internal fins, Numerical Heat Transfer 53 2008 749–65.

    [56] Lacroix M., Benmadda M., Numerical simulation of natural convection-dominated melting and solidification from a finned vertical wall, Numerical Heat Transfer 31 1997 71–86.

    [57] Lamberg P., Mathematical modeling and experimental investigation of melting and solidification in a finned phase change material storage. Doctoral Dissertation, Department of Mechanical Engineering, Helsinki University of Technology, Espoo, Finland, 2003.

    [58] Shatikian V., Ziskind G., Letan R. Numerical investigation of a PCM-based heat sink with internal fins, International Journal of Heat and Mass Transfer 48 2005 3689–706.

    [59] Shatikian V., Ziskind G., Letan R., Numerical investigation of a PCM-based heat sink with internal fins: constant heat flux, International Journal of Heat and Mass Transfer 51 2008 1488 93.

    [60] Agyenim F., Eames P. and Smyth M., Experimental study on the melting and solidification behaviour of a medium temperature phase change storage material (Erythritol) system augmented with fins to power a LiBr/H2O absorption cooling system, Renewable Energy 36 2011 108-117.

    [61] Trp A., Lenic K. and Frankovic B., Analysis of the influence of operating conditions and geometric parameters on heat transfer in water-paraffin shell-and-tube latent thermal energy storage unit, Applied Thermal Engineering 26 2006 1830–39.

    [62] Elgafy A., Lafdi K., Effect of carbon nanofiber additives on thermal behavior of phase change materials, Carbon 43 2005 3067–74.

    [63] Abduljalil A. Al-Abidi, Sohif Mat, K. Sopian, M.Y. Sulaiman, Abdulrahman. Th. Mohammad, Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins, Energy and Buildings 68 (2014) 33–41.

    [64] H. K. Versteeg, and W. Malalasekera, “An introduction to computational fluid dynamics the finite volume method”, Copublished in the United States with John Wiley & Sons Inc., 605 Third Avenue, New York, NY 10158, 1995.

    [65] Fluent Inc. Fluent 6.3 user’s guide. Lebanon; 2006.

    [66] J.H. Ferziger, M. Peric, “Computational Methods for Fluid Mechanics”, Springer-Verlag, Berlin Heidelberg, Germany. 1996.



تحقیق در مورد پایان نامه تحلیل عددی ذخیره سازی انرژی گرمایی در مبدل های حرارتی با مواد تغییر فاز دهنده , مقاله در مورد پایان نامه تحلیل عددی ذخیره سازی انرژی گرمایی در مبدل های حرارتی با مواد تغییر فاز دهنده , پروژه دانشجویی در مورد پایان نامه تحلیل عددی ذخیره سازی انرژی گرمایی در مبدل های حرارتی با مواد تغییر فاز دهنده , پروپوزال در مورد پایان نامه تحلیل عددی ذخیره سازی انرژی گرمایی در مبدل های حرارتی با مواد تغییر فاز دهنده , تز دکترا در مورد پایان نامه تحلیل عددی ذخیره سازی انرژی گرمایی در مبدل های حرارتی با مواد تغییر فاز دهنده , تحقیقات دانشجویی درباره پایان نامه تحلیل عددی ذخیره سازی انرژی گرمایی در مبدل های حرارتی با مواد تغییر فاز دهنده , مقالات دانشجویی درباره پایان نامه تحلیل عددی ذخیره سازی انرژی گرمایی در مبدل های حرارتی با مواد تغییر فاز دهنده , پروژه درباره پایان نامه تحلیل عددی ذخیره سازی انرژی گرمایی در مبدل های حرارتی با مواد تغییر فاز دهنده , گزارش سمینار در مورد پایان نامه تحلیل عددی ذخیره سازی انرژی گرمایی در مبدل های حرارتی با مواد تغییر فاز دهنده , پروژه دانشجویی در مورد پایان نامه تحلیل عددی ذخیره سازی انرژی گرمایی در مبدل های حرارتی با مواد تغییر فاز دهنده , تحقیق دانش آموزی در مورد پایان نامه تحلیل عددی ذخیره سازی انرژی گرمایی در مبدل های حرارتی با مواد تغییر فاز دهنده , مقاله دانش آموزی در مورد پایان نامه تحلیل عددی ذخیره سازی انرژی گرمایی در مبدل های حرارتی با مواد تغییر فاز دهنده , رساله دکترا در مورد پایان نامه تحلیل عددی ذخیره سازی انرژی گرمایی در مبدل های حرارتی با مواد تغییر فاز دهنده

ثبت سفارش
تعداد
عنوان محصول
بانک دانلود پایان نامه رسا تسیس