پایان نامه حل جریان جابجایی آزاد گذرا حول کره با استفاده از DQ-IDQ

word
105
3 MB
32574
1388
کارشناسی ارشد
قیمت: ۱۰,۵۰۰ تومان
دانلود فایل
  • خلاصه
  • فهرست و منابع
  • خلاصه پایان نامه حل جریان جابجایی آزاد گذرا حول کره با استفاده از DQ-IDQ

    پایان نامه تحصیلی برای دریافت درجه کارشناسی ارشد رشته مکانیک

    گرایش تبدیل انرژی

    چکیده:

    انتقال حرارت جابجایی آزاد یا طبیعی یکی از پدیده­های باکاربرد بسیاردر صنعت و در محیط پیرامون بشریت است. این پدیده به واسطه­ی کاربرد گسترده­ی آن مورد توجه بسیاری از محققین قرار گرفته است و محققین را بر آن داشته تا جریان جابجایی آزاد را بر روی هندسه­هایی چون صفحه، گوه، بیضی، استوانه، مخروط، کره دنبال کنند. در این میان با توجه به اتفاقاتی که جریان تا رسیدن به حالت دایم طی می­کند و در کل اهمیت جریان در حالت گذرا این حالت مورد توجه محققین قرار گرفته است که در این میان جریان گذرا اطراف برخی هندسه­ها از جمله کره کمتر مورد توجه قرار گرفته است. بنابراین در این پایان نامه به بررسی جریان جابجایی آزاد گذرا اطراف کره با در نظر گرفتن میدان مغناطیسی، با در نظر گرفتن جذب و تولید حرارت، با در نظر گرفتن لزجت متغیر با دما و با در نظر گرفتن هدایت حرارتی متغیر با دما پرداخته شده است. از طرفی یکی از بروزترین و کاراترین روش­های عددی ترکیب مربعات دیفرانسیل تکه‏ای (IDQ) با مربعات دیفرانسیل(DQ) می­باشد. به علت نوپا بودن این روش تا کنون از آن در حل عددی مسایل انتقال حرارت هدایت گذرا استفاده شده است. در این پایان نامه جریان ­های گذرا اطراف کره با استفاده از این روش عددی بررسی شده است. 

    1- مقدمه:

    یکی از پدیده­های انتقال حرارت، جابجایی آزاد یا طبیعی است. تغییر چگالی­ ای که بواسطه­­ی گرادیان دما ایجاد می­شود منجر به جاری شدن سیال می­گردد. حرکت سیال در جابجایی آزاد در مجاورت یک سطح در نتیجه­ی نیروهای شناوری است که به واسطه­ی گرادیان دما  اعمالی بر سیال در نزدیکی سطح و تغییرات چگالی سیال می­باشد. نیروهای شناوری که موجب جریان­ های جابجایی آزاد می­شوند را نیروهای حجمی[1] می­گویند. تاریخچه­ی تحقیقات اولیه­ی که این جریان را در نظر گرفتند، به یک صده قبل باز می­گردد. از آن زمان تاکنون داده­ها، روابط و تحلیل­هایی که بر این جریان حاکم می­باشند با رشد فوق­العاده­ی افزایش پیدا کرده­اند. علاقه­ی بی­شماری که بشریت به این پدیده نشان می­دهد، بازتاب نیاز فوق­العاده­ی است که بشر به این پدیده­ی جالب و حیاتی احساس می­کرده است. اهمیت و تنوعی که در بکارگیری این پدیده در صنعت و محیط اطراف به چشم می­آید، نشان بر کاربرد گسترده­ی این پدیده دارد. این پدیده گاه به تنهایی و گاه با ترکیب شدن با سایر پدیده­های انتقال در انتقال حرارت و جرم بکار گرفته شده است.

    از طرفی با توجه به اینکه سیستم­های واقعی فیزیکی یا مسائل مهندسی که بواسطه­ی این پدیده ایجاد می­شوند به کمک معادلات پاره­ای توصیف می­شوند، در اکثر حالت­ها، حل بسته­ی[2] آن­ها فوق­العاده سخت است. بدین سبب، روش­های تقریبی عددی به صورت گسترده­ای برای حل این معادلات، مورد استفاده قرار می­گیرند. بیشترین روش­های عددی که برای حل این­گونه مسائل به کار گرفته می­شوند، روش­های المان محدو­د[3]، تفاضل محدود[4] و حجم محدود[5] می­باشد این سه روش جز روش­های مرتبه­ی پایین طبقه­بندی می­شوند. روش­های مرتبه­ی پایین برای بدست آوردن دقت کافی در محاسبات نیازمند تعداد گره­های محاسباتی بالایی هستند. در مسایلی که چند بعد محاسباتی دارد نیاز به ظرفیت محاسباتی بالا برای حفظ دقت محاسبات بیشتر نمود پیدا می­کند. بنابراین محققین تلاش­هایی به منظور دست­یابی به روش­هایی که با تعداد گره­های محاسباتی کم، منجر به نتایجی با دقت بالا گردند را آغاز کردند. از این روش­ها تحت عنوان روش­های مرتبه­ی بالا یاد می­شود. از جمله­ی ماحصل این تلاش­ها می­توان به روش­های طیفی[6] و مربعات دیفرانسیل[7] اشاره کرد. همان­گونه که گفته شد یکی از مزایای این روش دست­یابی به دقت محاسباتی مناسب در عین کم بودن تعداد گره­های محاسباتی است.

    روش مربعات دیفرانسیل برای اولین بار توسط ریچارد بلمن و همکارنش در اوایل دهه­ی 70 میلادی به کار گرفته شده است. روش مربعات دیفرانسیل برگرفته شده از روش انتگرال­گیری مربعی[8] می­باشد. در این روش مقدار مشتق تابع در هر نقطه را با استفاده از مجموع حاصل­ضرب مقادیر تابع در مقادیر وزنی مرتبط در طول راستای مورد نظر تقریب می­زنند. نکته­ی کلیدی در بکار بردن این روش، تعیین ضرایب وزنی است. بدلیل محدودیت­هایی که در اعمال روش­های اولیه­ی تعیین ضرایب وزنی وجود داشت، این روش تا سال­های متمادی کمتر مورد استفاده قرار گرفت. تا این­که پژوهش­هایی که محققین در اواخر دهه­ی80 و اوایل دهه­ی 90 به منظور پیدا کردن ضرایب وزنی ساده­تر انجام دادند، منجر به معرفی این روش به عنوان ابزار عددی قدرتمندی در دو دهه­ی اخیر شد.

    با افزایش استفاده از این روش در سالیان اخیر محققین بنا به نیازی که احساس می­کردند، روش­های دیگری را از روش مربعات دیفرانسیل استخراج کردند که یکی از این روش­ها مربعات دیفرانسیل تکه­ای[9] است. این روش در مسایلی که تغییرات گرادیان متغییری شدید و یا در مسایلی با شرایط مرزی متغیر، کارایی بالایی دارد. ایده­ی روش مربعات دیفرانسیل تکه­ای در سال 2006 در مدل­سازی امواج در آب­های کم عمق بکار گرفته شد. اصول این روش بر پایه­ی تکه تکه کردن دامنه­ی محاسباتی بر زیر دامنه­ها و اعمال روش مربعات دیفرانسیل بر هر زیر دامنه است.

    در این پایان نامه جریان جابجایی آزاد گذرا حول کره با ترکیب دو روش مربعات دیفرانسیل و مربعات دیفرانسیل تکه­ای مورد بررسی قرار گرفته شده است.

    2.1-  مروری بر کارهای گذشته:

    جابجایی آزاد بدلیل کاربرد گسترده­ی که در صنعت و در محیط پیرامون بشر دارد بسیار مورد توجه قرار گرفته است. از طرفی با توجه به معادلات پاره­ای حاکم بر این پدیده و مشکل بودن ارایه­ی یک حل تحلیلی برای معادلات حاکم بر این جریان، بشر مجبور به استفاده از روش­های عددی برای حل این جریان شده است. از طرفی، حل عددی معادلات حاکم بر جابجایی آزاد دارای پیچیدگی­هایی است. علت این امر وابسته بودن معادله­ی مومنتم به معادله­ی انرژی از طریق نیروی بویانسی است و بنابراین می­بایست معادله­ی انرژی و مومنتم باید همزمان حل شوند. از طرفی یکی از عوامل اثر گذار در پیچیده­تر شدن معادلات هندسه­ی است که جریان بر روی بررسی می­شود. به عنوان مثال جریان بر روی کره نسبت به جریان برروی هندسه­های چون صفحات اعم از افقی، عمودی یا مایل و حتی استوانه­های با همین وضعیت پیچیده­تر می­باشد.

    در ادامه تعدادی از تحقیقاتی که جریان بر روی هندسه­هایی چون کره را بررسی کرده­اند، معرفی می­شوند. گارنر و گرفتن ]1[ به بررسی اثر انتقال جرم بر روی کره­ی غیر متخلخل پرداختند. آماتو و چی ]2[ به بررسی اثر جابجایی آزاد اطراف کره­ی غوطه­ور در آب پرداختند. برومهام و میهو]3[ جریان جابجایی آزاد هوا را بر روی کره بررسی کردند.  گیولا و کورنیش ]4[ با استفاده از روش عددی تفاضل محدود[10] به بررسی جریان و انتقال حرارت اطراف کره پرداختند. سینگاه و حسن ]5[ به بررسی جریان جابجایی آزاد در اطراف کره با گراشف­های پایین پرداختند.  هیوانگ و چن ]6[با استفاده از روش عددی تفاضل محدود اثر مکش و دمش بر روی کره را بررسی کردند. چن و چن ]7[جریان جابجایی آزاد سیال غیرنیوتنی اطراف کره و استوانه با استفاده از روش رانگ کوتا[11] مرتبه­ی چهار مورد مطالعه قرار دادند. جعفرپور و یووانوویچ  ]8[ با استفاده از سری­ها یک حل نیمه تحلیلی برای جریان جابجایی آزاد بر روی کره­ی همدما ارایه دادند. جیا و گوگس ]9[ جریان جابجایی آزاد اطراف کره­ی همدما را بررسی کردند. نظر و همکاران ]10[جریان جابجایی آزاد سیال میکروپولار[12] در اطراف کره با شار ثابت مطالعه کردند. ایشان با استفاده روش عددی کلرباکس[13] به حل این مساله پرداختند. نظر و همکاران ]11[ در ادامه کار قبل جریان جابجایی آزاد سیال میکروپولار در اطراف کره­ی همدما با استفاده از همان روش قبل بررسی کردند. مولا و همکاران ]12[ به بررسی اثر تولید حرارت بر جریان جابجایی آزاد در میدان مغناطیسی اطراف کره پرداختند. چنگ ]13[ انتقال حرارت و انتقال جرم جریان جابجایی آزاد اطراف کره­ در مجاورت سیال میکروپولار را با استفاده از روش جمع­آوری اسپیلاین مکعبی[14]  بررسی کرد. بگ و همکاران ]14[ به بررسی اثر جذب و تولید حرارت بر جابجایی آزاد اطراف کره درون میدان مغناطیسی که در محیط متخلخلی قرار دارد، پرداخته­اند.

    ABSTRACT:

    The natural convection process has developed considerable importance because of its relevance to heat transfer in many engineering applications. Due to its great applications, researchers’ interest was sprang and motivated them to investigate free convection on the various geometries such as plate, cone, cylinder, sphere and etc.

    Also, study of transient problems over theses geometries have its importance and attraction for investigators. It’s worth mentioning that just a few studies are presented transient fluid flow over a sphere.

    On the other hand, one of the most updated and applicable methods in simulation of transient problems is the combination of two promising numerical methods: incremental differential quadrature (IDQ) and differential quadrature (DQ). Due to novelty of this method, it is new challenging task to employ this method on transient convection heat transfer problems. So, DQ-IDQ solution of transient convective heat transfer around a sphere in the following cases studied:

    Natural convection in the presence of uniform magnetic filed

    Natural convection in the presence of heat generation/absorption

    Natural convection with temperature dependent viscosity

    Natural convection with temperature dependent thermal conductivity

  • فهرست و منابع پایان نامه حل جریان جابجایی آزاد گذرا حول کره با استفاده از DQ-IDQ

    فهرست:

    فصل اول: مقدمه

    1.1  مقدمه.......................................................................................................................................................... 2  

    2.1   مروری بر کارهای گذشته...................................................................................................................... 4

    3.1  اهداف پایان­نامه..................................................................................................................................... 15

    فصل دوم:

    روش مربعات دیفرانسیل و  روش مربعات دیفرانسیل تکه­ای

    1.2- مقدمه....................................................................................................................................................... 17

    2.2- انتگرال­گیری مربعی............................................................................................................................. 18

    3.2- مربعات دیفرانسیلی............................................................................................................................ 19

    4.2- محاسبه­ی ضرایب وزنی مشتق مرتبه­ی اول................................................................................. 19

    1.4.2- تقریب بلمن......................................................................................................................................... 19

    1.1.4.2- تقریب اول بلمن.............................................................................................................................. 19

    2.1.4.2- تقریب دوم بلمن.............................................................................................................................. 20

    2.4.2- تقریب کلی شو.................................................................................................................................. 21

    5.2- محاسبه­ی ضرایب وزنی مشتقات مرتبه­ی دوم و بالاتر............................................................. 23

    1.5.2-ضرایب وزنی مشتق مرتبه­ی دوم.................................................................................................... 23

    1.1.5.2- تقریب کلی شو.............................................................................................................................. 23

    2.5.2- رابطه­ی بازگشتی شو برای محاسبه­ی مشتق مراتب بالاتر............................................... 24

    3.5.2- تقریب ضرب ماتریسی..................................................................................................................... 26

    6.2- اعمال شرایط مرزی.............................................................................................................................. 27

    7.2- انواع انتخاب فواصل بین نقاط......................................................................................................... 29

    8.2- مربعات دیفرانسیل تکه­ای................................................................................................................. 31

    9.2- بررسی کارایی روش مربعات دیفرانسیل....................................................................................... 32

    1.9.2- جریان جابجایی آزاد دایم بر روی کره دما ثابت............................................................................ 32

    1.1.9.2- مدل­سازی ریاضی جریان............................................................................................................... 32

    2.1.9.2- گسسته­سازی معادلات با استفاده از روش مربعات دیفرانسیل.................................. 35

    3.1.9.2- نتایج................................................................................................................................................... 36

    فصل سوم:

    جریان جابجایی آزاد گذرا بر روی کره دما ثابت

    1.3- بررسی جریان جابجایی آزادگذرا اطراف کره­ی همدما.............................................................. 40

    1.1.3- مدل­سازی ریاضی جریان.................................................................................................................. 40

    2.1.3- گسسته­سازی معادلات با استفاده از روش مربعات دیفرانسیل...................................... 43

    3.1.3- نتایج...................................................................................................................................................... 44

    2.3- بررسی جریان جابجایی آزاد گذرا بر روی کره دما ثابت در حضور میدان مغناطیسی.... 44

    1.2.3- مدل­سازی ریاضی جریان.................................................................................................................. 47

    2.2.3- نتایج...................................................................................................................................................... 49

    3.3- بررسی اثر تولیدو جذب حرارت بر جریان جابجایی آزاد گذرا بر روی کره دما ثابت........... 50

    1.3.3- مدل­سازی ریاضی جریان.................................................................................................................. 50

    2.3.3- نتایج...................................................................................................................................................... 51

    4.3- بررسی اثر لزجت متغیر با دما بر جریان جابجایی آزاد گذرا بر روی کره دما ثابت............ 53

    1.4.3- مدل­سازی ریاضی جریان.................................................................................................................. 54

     2.4.3- نتایج..................................................................................................................................................... 55

     5.3- بررسی اثر هدایت حرارتی متغیر با دما بر جریان جابجایی آزاد گذرا بر روی کره دما ثابت......... 56

     1.5.3- مدل­سازی ریاضی جریان................................................................................................................. 57

     2.5.3- نتایج..................................................................................................................................................... 59

     6.3- بررسی اثر لزجت و هدایت حرارتی متغیر با دما بر جریان جابجایی آزاد گذرا بر روی کره دما ثابت        60

    1.6.3- مدل­سازی ریاضی جریان.................................................................................................................. 60

     2.6.3- نتایج..................................................................................................................................................... 63

     7.3- بررسی اثر لزجت و هدایت  حرارتی متغیر با دما بر جریان جابجایی آزاد گذرا بر روی کره دما ثابت  تحت میدان مغناطیسی با در نظر گرفتن تولید و جذب حرارت........................................................................................................ 63

    1.7.3- مدل­سازی ریاضی جریان.................................................................................................................. 63

     2.7.3- نتایج..................................................................................................................................................... 67

    فصل چهارم:

    بحث و نتیجه­گیری و پیشنهادات

    1.4- بحث و نتیجه­گیری.............................................................................................................................. 69

    2.4- پیشنهادات.............................................................................................................................................. 70

    فهرست مراجع................................................................................................................................................ 72

    پیوست­ها

    جداول.................................................................................................................................................................. 89

    اشکال و نمودارها............................................................................................................................................. 96

     

    منبع:

     

     1. F.H.Garner and R.W. Grafton, Mass transfer in fluid flow from a solid sphere, JSTOR Proceedings of the Royal Society of London,Series A, Mathematical and Physical Sciences, Vol. 224, No. 1156 (1954), pp. 64-82.

    2. R. J. Bromham and Y. R. Mayhew, Free convection from a sphere in air, International Journal of Heat and Mass Transfer, Vol. 5, 1962, pp. 83-84.

    3. W. S. Amato and T. Chi, Free convection heat transfer from isothermal spheres in water, International Journal of Heat and Mass Transfer, Vol. 15, 1972, pp. 327-339.

    4. F. Geoola ,A. R. H. Cornish, Numerical solution of steady-state free convective heat transfer from a solid sphere, International Journal of Heat and Mass Transfer, Vol. 24, 1981, pp. 1369-1379.

    5. S.N. Singha and M.M. Hasan,Free convection about a sphere at small Grashof number , International Journal of Heat and Mass Transfer,Vol. 26, 1983, pp. 781-783.

    6. M.Huang and C.K.Chen, Laminar free convection from a sphere with blowing and suction, Journal of heat transfer, Vol.109, 1987, PP. 529-532.

    7. H.T. Chen and C.K. Chen, Natural convection of a non-Newtonian fluid about a horizontal cylinder and a sphere in a porous medium, International Communications in Heat and Mass Transfer, Vol. 15,  1988, pp.605-614 

    8. K. Jafarpur and M.M. Yovanovich, Laminar free convective heat transfer from isothermal spheres: A new analytical method, International Journal of Heat and Mass Transfer, Vol. 35, 1992, pp. 2195-2201.

    9.  H. Jia and G. Gogos,Laminar natural convection heat transfer from isothermal spheres, International Journal of Heat and Mass Transfer, Vol. 39, 1996, pp. 1603-1615.

    10. R. Nazar, N. Amin, T.Grosan and I.Pop, Free convection boundary layer on a sphere with constant surface heat flux in a micropolar fluid, Int. comm. heat Mass transfer, vol.29, 2002, pp. 1129-1138.

    11. R. Nazar, N. Amin, T.Grosan and I.Pop, Free convection boundary layer on an isothermal sphere in a micropolar fluid, Int. comm. heat Mass transfer, vol.29, 2002, pp. 377-386.

    12. M.A. Molla, M.A. Taher, M.M.K. Chowdhury and M.A. Hossain, Magnetohydrodynamic natural convection flow on a sphere in presence of heat generation, Nonlinear Analysis:Modelling and Control, Vol. 10, 2007,pp. 349– 363.

    13. C.Y. Cheng, Natural convection heat and mass transfer from a sphere in micropolar fluids with constant wall temperature and concentration, International Communications in Heat and Mass Transfer,Vol. 35, 2008, pp. 750–755.

    14. O. Anwar Bég, Joaquín Zueco, R. Bhargava and H.S. Takhar,  Magnetohydrodynamic convection flow from a sphere to a non-Darcian porous medium with heat generation or absorption effects:network simulation, International Journal of Thermal Sciences, Vol. 48, 2009, pp. 913–921. 

    15. M. Katagiri, Yamagata and I. Pop, Transient Free Convection from an Isothermal Horizontal Circular Cylinder, Wirme- und Stofffibertragung, vol. 12, 1979, pp. 73-81.

    16. V.P. Carey, Analysis of transient natural convection flow at high Prandtl number using a matched asymptotic expansion technique, Int. J. Heat Mass Transfer, vol. 26 ,1983, pp. 911–919.

    17. T. Fujii, T. Honda and M.Fujii, A Numerical Analysis of Laminar Free Convection Around an Isothermal Sphere: Finite-Difference Solution of the Full Navier-Stokes and Energy Equations Between Concentric Spheres, Numerical Heat Transfer, Part B: Fundamentals,vol. 7, 1984, pp.103 - 111

    18. V.M. Soundalgekar and P. Ganesan, Transient free convection with mass transfer on a vertical plate with constant heat flux, Int. J. Energy Res., vol. 9, 1985, pp. 1–18.

    19. M. Kumari, A. Slaouti, H.S. Takhar, S. Nakamura and G. Nath, Unsteady free convection flow over a continuous moving vertical surface, Acta Mech., vol. 116, 1996, pp. 75–82.

    20. C.P. Chiu and W. R. Chen, Transient natural convection heat transfer between concentric and vertically eccentric spheres, International Journal of Heat and Mass Transfer, Vol. 39, 1996, pp. 1439-1452.

    21. M. Kassem,Group solution for unsteady free-convection flow from a vertical moving plate subjected to constant heat flux, Journal of Computational and Applied Mathematics, vol.187, 2006, pp. 72–86.

    22.  M. Kumari a and G. Nath, Unsteady natural convection from a horizontal annulus filled with a porous medium International Journal of Heat and Mass Transfer, vol. 51, 2008, pp. 5001–5007.

    23. Gh. Juncu, Unsteady conjugate forced convection heat/mass transfer

    from a finite flat plate, International Journal of Thermal Sciences , vol. 47, 2008, pp. 972–984.  

    24. D.B. Ingham, J.H. Merkin, I.Pop, Unsteady free convection of a stagnation point of attachment on an isothermal surface, Int. J. Math. & Mathematical science, vol. 7, 1984, pp. 599-614.

    25. B. Yan , I. Pop, D. B. Ingham,  A numerical study of unsteady free convection from a sphere in a porous medium, International Journal of Heat and Mass Transfer, Vol. 40, 1997, pp. 893-903.

    26. T. Sano , K. Makizono, Unsteady mixed convection around a sphere in a porous medium at low Peclet numbers , Fluid Dynamics Research , vol. 23 ,1998, pp. 45-61.

    27. H. S. Takhar, A. Slaouti, M. Kumari and G. Nath, Unsteady free convection flow in the stagnation point of a rotating, Int. J. Non-Linear Mechanics, Vol. 33, 1998, pp. 857-865.

    28. A. Slaouti, H.S. Takhar, G. Nath, Unsteady free convection flow in the Stagnation point region of a three-dimensional body, Int. J. Heat MassTransfer , vol. 41 , 1998, pp. 3397–3408.

    29.  H. Niazmand, M. Renksizbulut, Transient three-dimensional heat transfer from rotating spheres with surface blowing, Chemical Engineering Science, vol.  58, 2003, pp. 3535 – 3554.

    30. W. R. Chen,Transient natural convection of micropolar fluids between concentric and vertically eccentric spheres, International Journal of Heat and Mass Transfer, vol. 48, 2005, pp. 1936–1951.

    31. M. Cem Ece, A. Ozturk, Modelling unsteady convective heat transfer for fuel droplets, Energy Conversion and Management, vol. 48, 2007, pp.689–692.

    32. S.Yang, V. Raghavan and G. Gogos,Numerical study of transient laminar natural convection over an isothermal sphere, International Journal of Heat and Fluid Flow, vol.  28, 2007, pp. 821–837.

    33. K. Saito, V.Raghavan ,G. Gogos,  Numerical study of transient laminar natural convection heat transfer over a sphere subjected to a constant heat flux, Heat Mass Transfer, vol. 43, 2007, pp. 923–933.

    34. H. Xu, S.J. Liao, I. Pop, Series solutions of unsteady free convection flow in the stagnation-point region of a three-dimensional body , International Journal of Thermal Sciences, vol. 47,  2008 , pp. 600–608.

    35.  B. Shanker, N. Kishan, The effects of mass transfer on the MHD flow past an impulsively started infinite vertical plate with variable temperature or constant heat flux, J. Energy, Heat Mass Transfer, vol. 19,1997, pp. 273–278.

    36.  E.M.A. Elbashbeshy, Heat and Mass transfer along a vertical plate with variable surface tension and concentration in the presence of the magnetic field, Int. J. Eng. Sci. , vol. 34, 1997, pp. 515–522.

    37. T.V.S. Sekhara, R. Sivakumarb, T.V.R. Ravi Kumar, Magnetohydrodynamic flow around a sphere, Fluid Dynamics Research , vol.37, 2005, pp. 357–373.

    38. O. Anwar Bég a, A.Y. Bakier , V.R. Prasad, J. Zueco and S.K. Ghosh, Nonsimilar, laminar, steady, electrically-conducting forced convection liquid metal

    boundary layer flow with induced magnetic field effects, International Journal of Thermal Sciences , vol. 48, 2009,  pp. 1596–1606.

    39. K.A. Helmy, MHD unsteady free convection flow past a vertical porous plate, ZAMM, vol. 78, 1998, pp. 255–270.

    40.  H.S. Takhar, A.J. Chamkha, G. Nath, Unsteady mixed convection flow from a rotating vertical cone with a magnetic field, Heat and Mass Transfer, vol. 39, 2003, pp. 297–304.

    41.  P. Ganesan, G. Palani, Numerical solution of unsteady MHD flow past a semi-infinite isothermal vertical plate, in: Proceedings of the sixth ISHMT/ASME Heat and Mass Transfer Conference and Seventeenth National Heat and Mass Transfer Conference, Kalpakkam, India, January 5– 7, 2004, pp. 184–187.

    42. P. Ganesan , G. Palani, Finite difference analysis of unsteady natural convection MHD flow past an inclined plate with variable surface heat and mass flux, International Journal of Heat and Mass Transfer , vol.47, 2004, pp. 4449–4457.

    43. S. Roy, D. Anilkumar, Unsteady mixed convection from a rotating cone in a rotating fluid due to the combined effects of thermal and mass diffusion International Journal of Heat and Mass Transfer , vol.47, 2004, pp. 1673–1684.

    44. J. Z. Jorda´n, Network simulation method applied to radiation  and viscous dissipation effects on MHD unsteady free convection over vertical porous plate, Applied Mathematical Modelling , vol.31, 2007, pp. 2019–2033.

    45. Hang Xu , Shi-Jun Liao, Ioan Pop, Series solutions of unsteady three-dimensional MHD flow and heat transfer in the boundary layer over an impulsively stretching plate, European Journal of Mechanics B/Fluids, vol. 26, 2007, pp. 15–27.

    46. S.M.M. EL-Kabeir, M.A. EL-Hakiem, A.M. Rashad, Lie group analysis of unsteady MHD three dimensional by natural convection from an inclined stretching surface saturated porous medium, Journal of Computational and Applied Mathematics, vol. 213, 2008, pp. 582 – 603.

    47. S. Dinarvand , A. Doosthoseini , E. Doosthoseini , M. Rashidi, Series solutions for unsteady laminar MHD flow near forward stagnation point of an impulsively rotating and translating sphere in presence of buoyancy forces, Nonlinear Analysis: Real World Applications, Article in press.

    48.K. Vajravelu, A. Hadjinicolaou, Heat transfer in a viscous fluid over a stretching sheet with viscous dissipation and internal heat generation, Int. J. Commun. Heat Mass Transfer, vol. 20, 1993, pp. 417–430.

    49. A. J. Chamkha, Thermal radiation and buoyancy effects on hydromagnetic flow over an accelerating permeable surface with heat source or Sink, International Journal of Engineering Science, vol. 38, 2000, pp. 1699-171.

    50.  K.A. Yih, Viscous and joule heating effects on non-darcy MHD natural convection flow over a permeable sphere in porous media with internal heat generation, Int. Comm. Heat Mass Transfer, Vol. 27, 2000, pp. 591-600.

    51. M.H. Kamel, Unsteady MHD convection through porous medium with combined heat and mass transfer with heat source/sink, Energy Conversion and Management, vol. 42, 2001, pp.393-405.

     52. A.J. Chamkhah, MHD flow of a uniformaly stretched vertical permeable surface in the presence of heat generation /absorption and a chemical reaction, Int. Comm. Heat Mass Transfer, vol. 30, 2003, pp. 413-422. 

     53. E.M. Abo-Eldahab, A.M. Salem, MHD free-convection flow of a non-Newtonian power-law fluid at a stretching surface with a uniform free-stream, Applied Mathematics and Computation, vol. 169, 2005, pp. 806–818.

    54. Md. M. Molla, M.A. Taher, Md. M.K. Chowdhury, Md.A. Hossain, Magnetohydrodynamic Natural Convection Flow on a Sphere in Presence of Heat Generation, Nonlinear Analysis: Modelling and Control, Vol. 10, 2005, pp. 349–363.

    55. M. M. Molla, M. A. Hossain and M. A. Taher, Magnetohydrodynamic natural convection flow on a sphere with uniform heat flux in presence of heat generation, Acta Mechanica, vol. 186, 2006, pp.75–86.

    56. Md. M. Molla, Md. A. Hossain, M. C. Paul Natural convection flow from an isothermal horizontal cylinder in presence of heat generation. International Journal of Engineering Science, vol. 44, 2006, pp. 949-958.

    57. F.M. Hady, R.A. Mohamed , A. Mahdy, MHD free convection flow along a vertical wavy surface with heat generation or absorption effect, International Communications in Heat and Mass Transfer , vol. 33, 2006, pp. 1253–1263.

    58. Md.M. Alam, M.A. Alim, Md.M.K. Chowdhury, Viscous Dissipation Effects on MHD Natural Convection Flow over a Sphere in the Presence of Heat Generation, Nonlinear Analysis: Modelling and Control Vol. 12, 2007, pp. 447–459.

    59. R.A. Mohamed, Ibrahim A. Abbas, S.M. Abo-Dahab, Finite element analysis of hydromagnetic flow and heat transfer of a heat generation fluid over a surface embedded in a non-Darcian porous medium in the presence of chemical reaction, Commun. Nonlinear  Sci. Numer. Simulat., article in press.

    60. M.M. Abdelkhalek, Hydromagnetic stagnation point flow by a perturbation technique, Computational Materials Science , vol. 42, 2008, pp. 497–503.

    61. A.A. Mamun , Z.R. Chowdhury, M.A. Azim, M.M. Molla, MHD-conjugate heat transfer analysis for a vertical flat plate in presence of viscous dissipation and heat generation, International Communications in Heat and Mass Transfer, article in press.

    62. F.S. Ibrahim, A.M. Elaiw, A.A. Bakr, Effect of the chemical reaction and radiation absorption on the unsteady MHD free convection flow past

    a semi infinite vertical permeable moving plate with heat source and suction, Communications in Nonlinear Science and Numerical Simulation, vol. 13, 2008, pp.1056–1066.

    63. Md. Mamun Molla, Sreebash C. Paul , Md. Anwar Hossain, Natural convection flow from a horizontal circular cylinder with uniform heat flux in presence of heat generation, Applied Mathematical Modelling, vol. 33 ,2009, pp. 3226–3236.

    64. E. R. G. Eckert and M. Faghiri, Viscous heating of high Prandtl number fluids with temperature-dependent viscosity, Int. J. Hew Mass Transfer. Vol. 29, No. 8, PP. 1177-1183, 1986.

    65. Y.M. Chen, A.J. Pearlstein, Viscosity–temperature correlation for glycerol–water solutions, Ind. Eng. Chem. Res., 26 (1987) 1670–1672.

    66. H.W. Wu , W.C. Tsai, H.M. Chou, Transient natural convection heat transfer of fluids with variable viscosity between concentric and vertically eccentric spheres, International Journal of Heat and Mass Transfer 47 (2004) 1685–1700.

     67. S. Bagai, Effect of variable viscosity on free convection over a non-isothermal axisymmetric body in a porous medium with internal heat generation, Acta Mechanica 169, 187–194 (2004).

    68. M. A.A. Mahmoud, Variable Viscosity Effects on Hydromagnetic Boundary

    Layer Flow along a Continuously Moving Vertical Plate In the Presence of Radiation, Applied Mathematical Sciences, Vol. 1, 2007, no. 17, 799 – 814.

    69. S. Mukhopadhyay, G.C. Layek, Sk.A. Samad, Study of MHD boundary layer flow over a heated stretching sheet with variable viscosity,  International Journal of Heat and Mass Transfer 48 (2005) 4460–4466.

    70. Md.A. Hossain a, Md.S. Munir, I. Pop,  Natural convection with variable viscosity and thermal conductivity from a vertical wavy cone, Int. J. Therm. Sci. (2001) 40, 437–443.

    71. M. Kumari, Variable viscosity effects on free and mixed convection boundary layer flow from a horizontal surface in a saturated porous medium-variable heat flux, Mechanics Research Communications, Vol. 28, No. 3. pp. 339-348, 200l.

    72. M. A. Hossain, Kh. Khanafer, K. Vafai, The effect of radiation on free convection flow of fluid with variable viscosity from a porous vertical plate, Int. J. Therm. Sci. (2001) 40, 115–124.

    73. Saleh M. Al-Harbi, Numerical study of natural convection heat transfer with variable viscosity and thermal radiation from a cone and wedge in porous media, Applied Mathematics and Computation 170 (2005) 64–75.

    74. I.A. Hassanien , T.H. Al-arabi, Non-Darcy unsteady mixed convection flow near the stagnation point on a heated vertical surface embedded in a porous medium with thermal radiation and variable viscosity, Commun Nonlinear Sci Numer Simulat 14 (2009) 1366–1376.

    75. S. Mukhopadhyay, Unsteady boundary layer flow and heat transfer past a porous stretching sheet in presence of variable viscosity and thermal diffusivity, International Journal of Heat and Mass Transfer, ARTICLE IN PRESS.

    76. L.S. YAO and I. CATTON, The buoyancy and variable viscosity effects on a water laminar boundary layer along a heated longitudinal horizontal cylinder, Int. J. Heat Mass Transfer. Vol. 21, pp. 407-414. Pergamon Press 1978.

    77. J.X. Lings, A. Dybbs, Forced Convection Over a Flat Plate Submersed in a Porous Medium: Variable Viscosity Case, Paper 87-WA/HT-23, ASME, New York, 1987.

    78. S. Jayanthi, M. Kumari, Effect of variable viscosity on non-Darcy free or mixed convection flow on a vertical surface in a fluid saturated porous medium, Mechanics Research Communications 33 (2006) 148–156.

    79. C.Y. Chen, The effect of temperature-dependent viscosity on the natural convection heat transfer from a horizontal isothermal cylinder of elliptic cross section, International Communications in Heat and Mass Transfer 33 (2006) 1021–1028.

    80. Md. M. Molla, Md. A. Hossain, Effects of chemical reaction, heat and mass diffusion in natural convection flow from an isothermal sphere with temperature dependent viscosity, Engineering Computations: International Journal for Computer-Aided Engineering and Software, Vol. 23 No. 7, 2006,pp.840-857.

    81. A.A. Afify, Effects of variable viscosity on non-Darcy MHD free convection along a non-isothermal vertical surface in a thermally stratified porous medium, Applied Mathematical Modelling 31 (2007) 1621–1634.

    82. K.E. Chin, R. Nazar, N.M. Arifin, I. Pop, Effect of variable viscosity on mixed convection boundary layer flow over a vertical surface embedded in a porous medium, International Communications in Heat and Mass Transfer 34 (2007) 464–473.

    83. C.Y. Cheng, Nonsimilar boundary layer analysis of double-diffusive convection from a vertical truncated cone in a porous medium with variable viscosity, Applied Mathematics and Computation 212 (2009) 185–193.

    84. S. Ahmad, N.M. Arifin, R. Nazar, I. Pop, Mixed convection boundary layer flow past an isothermal horizontal circular cylinder with temperature-dependent viscosity, International Journal of Thermal Science, ARTICLE IN PRESS.

    85. Slattery JC. Momentum, energy and mass transfer in continua. New York: McGraw-Hill; 1972.

    86. Md. A. Hossain, Md. S. Munir, D. A. S. Rees, Flow of viscous incompressible fluid with temperature dependent viscosity and thermal conductivity past a

    permeable wedge with uniform surface heat flux, Int. J. Therm. Sci. (2000) 39, 635–644.

    87. Md. A. Hossain, Md. S. Munir, I. Pop, Natural convection with variable viscosity and thermal conductivity from a vertical wavy cone, Int. J. Therm. Sci. (2001) 40, 437–443.

    88. E.M.E. Elbarbary, N.S. Elgazery, Chebyshev finite difference method for the effects of variable viscosity and variable thermal conductivity on heat transfer

    from moving surfaces with radiation, International Journal of Thermal Sciences 43 (2004) 889–899.

    89. S.N. Odda, A.M. Farhan, Chebyshev finite difference method for the effects of variable viscosity and variable thermal conductivity heat transfer to a micro-polar fluid from a non-isothermal stretching sheet with suction and blowing, Chaos, Solitons and Fractals 30 (2006) 851–858.

    90. B.S. Dandapat, B. Santra, K. Vajravelu, The effects of variable fluid properties and thermocapillarity on the flow of a thin film on an unsteady stretching sheet, International Journal of Heat and Mass Transfer 50 (2007) 991–996.

    91. A.M. Salem, Variable viscosity and thermal conductivity effects on MHD flow and heat transfer in viscoelastic fluid over a stretching sheet, Physics Letters A 369 (2007) 315–322.

    92. M.A. Seddeek, F. A. Salama, The effects of temperature dependent viscosity and thermal conductivity on unsteady MHD convective heat transfer past a semi-infinite vertical porous moving plate with variable suction, Computational Materials Science 40 (2007) 186–192.

    93. P.R.Sharma and G. Singh, Effects of Variable Thermal Conductivity and Heat Source / Sink on MHD Flow Near a Stagnation Point on a Linearly Stretching Sheet, Journal of Applied Fluid Mechanics, Vol. 2, No. 1, pp. 13-21, 2008.

    94. M. Subhas Abela, P.G. Siddheshwarb, N.Mahesha, Effects of thermal buoyancy and variable thermal conductivity on the MHD flow and heat transfer in a power-law fluid past a vertical stretching sheet in the presence of a non-uniform heat source, International Journal of Non-Linear Mechanics ,ARTICLE IN PRESS.

    95. R. Tsai, K.H. Huang, J.S. Huang, The effects of variable viscosity and thermal conductivity on heat transfer for hydromagnetic flow over a continuous moving porous plate with Ohmic heating, Applied Thermal Engineering, ARTICLE IN PRESS.

    96. R. E. Bellman, J. Casti, differential quadrature and long-term integration, J. Math. Anal. Appl., vol. 34 (1971) pp. 235-238.

    97. R. E. Bellman, B. G. Kashef, J. Casti, differential quadrature : a technique for  the rapid  solution of nonlinear partial differential equation, J. Comput. Phys., vol. 10 (1972) pp. 40-52.

    98. R. E. Bellman, B. G. Kashef, R. Vasudevan, the inverse problem of estimating heart parameters from cardiograms, Math. Biosci., vol. 19 (1974) pp.221-230.

    99. R. E. Bellman, R. S. Roth, Methods in approximation: techniques for mathematical modeling, D Reidel Publishing company, Dordecht, Holland.

    100. B. G. Kashef, R. E. Bellman, solution of the partial differential equation of the Hodgkin-Huxley model using differential quadrature, Math. Biosci., vol. 19 (1974) pp. 1-8.

    101. L.C. Hu, C.R. Hu, identification of rate constenls by differential quadrature in partly measurable compartmental models, Math. Biosci., vol. 21 (1974) pp. 71-76.

    102. R. E. Bellman, B. G. Kashef, E. S. Lee, R. Vasudevan, solving hard problem by easy method: differential and integral quadrature, Comp. & Math. with Appl., vol. 1 (1975) pp.133-143.

    103. R. E. Bellman, B. G. Kashef, E. S. Lee, R. Vasudevan, differential quadrature and splines, Comp. & Math. with Appl., vol. 1 (1975) pp. 371-376.

    104. J. O. Mingle, the method of differential quadrature for transient nonlinear diffusion, J. Math. anal. Appl., vol. 60 (1977) pp. 559-569.

    105. K. M. Wang, Solving the model of isothermal reactors with axial mixing by the differential quadrature method, Int. J. Numer. methods Eng., vol. 18 (1982) pp. 111-118.

    106. F. Civan, C. M. sliepcevich, application of differential quadrature to transport processes, J. Math. Anal. Appl. Vol. 93 (1983) pp. 206-221.

    107. F. Civan, C. M. sliepcevich, solution of the poisson equation by differential quadrature, Int. J. Numer. methods Eng., vol. 19 (1983) pp. 711-724.

    108. F. Civan, C. M. sliepcevich, on the solution of Thomas-Fermi equation by differential quadrature, J. Comput. Phys., vol. 56 (1984) pp. 343-348.

    109. F. Civan, C. M. sliepcevich, differential quadrature for multi-dimensional problems, J. Math. Anal. Appl. Vol. 101 (1984) pp. 423-443.

    110. G. Naadimuthu, R. E. Bellman, K. M. Wang, E. S. Lee, differential quadrature and partial differential equations: some numerical results, J. Math. Anal. Appl., vol. 98 (1984) pp. 220-233.

    111. C. W. Bert, S. K. Jang, A.G. Striz, two new approximate method for analyzing free vibration of structural components, AIAA J., vol. 26 (1988) pp. 612-618.

    112. C. W. Bert, S. K. Jang, A.G. Striz, nonlinear bending of orthotropic rectangular plates by the method of differential quadrature, Comput.  Mech., vol. 5 (1989) pp. 217-226.

    113.  S. K. Jang, C. W. Bert, A.G. Striz, application of differential quadrature to static analysis of structural components, Int. J. Numer. methods Eng., vol. 28 (1989) pp. 561-577.

    114. Shu, C., “Generalised Differential-Integral Quadrature and Application to the Simulation of Incompressible Viscous Flows Including Parallel Computation,” Ph.D. Thesis, University of Glasgow, UK, 1991.

    115. Shu, C., and Richards, B.E., “Application of Generalised Differential Quadrature to Solve Two-Dimension Incompressible Navier-Stokes Equations,” Int. J. Numer. Meth. Fluids, Vol.15, pp. 791–798, 1992.

    116. Shu, C., and Chew, Y.T., “Fourier Expansion-Based Differential Quadrature and Its Application to Helmholtz Eigenvalue Problems,” Comput. Numer. Meth. Engrg., Vol. 13, pp. 643–653, 1997.

    117. C. SHU and H. DU, Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates, International Journal of Solids and Structures, Vol. 34,pp. 819-835, 1997.

     

    118. C. SHU and H .DU, A generalized approach for implementing general boundary conditions in the GDQ free vibration analysis of plates, International Journal of Solids and Structures Vol. 34, pp.837-846, 1997.

     

    119. Shu, C., Differential Quadrature and Its Application in Engineering, Springer, Berlin, 2000.

    120. O. Civalek, Application ofdifferential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns, Engineering Structures, Vol. 26, pp.171–186, 2004.

    121. X.Wang, L. Gan, Y. Wang, A differential quadrature analysis of vibration and buckling of an SS-C-SS-C rectangular plate loaded by linearly varying in-plane stresses, Journal of Sound and Vibration, Vol. 298, pp. 420–431, 2006.

    122. P. Malekzadeh, M. Farid, P. Zahedinejad, A three-dimensional layerwise-differential quadrature free vibration analysis of laminated cylindrical shells, International Journal of Pressure Vessels and Piping, Vol. 85, pp. 450– 458, 2008.

    123. L.L. Ke, Y. Xiang, J. Yang, S. Kitipornchai, Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory, Computational Materials Science, In press.

    124. C.Shu, L.Wang, Y.T. Chew, N. Zhao, Numerical Study of Eccentric Couette–Taylor Flows and Effect of Eccentricity on Flow Patterns, Theoretical and Computational Fluid Dynamics, Vol. 18, pp. 43–59, 2004.

    125. A.S.J.  Al-Saif and Z. Zheng-You, Diffrential Quadrature Method for Steady Flow an Incompressible Second-Order Viscolastic Fluid and Heat Transfer Model, Journal of Shanghai University, Vol. 9, pp. 298-305, 2005.

    126. Y.D. Zhu, C. Shu, J. Qiu, J.Tani, Numerical simulation of natural convection between two elliptical cylinders using DQ method,  International Journal of Heat and Mass Transfer, Vol. 47, pp. 797–808, 2004.

    127. D.C.  Lo, D.L. Young, K.C.C. Tsai, M.H. Gou, Velocity–vorticity formulation for 3D natural convection in an inclined cavity by DQ method,  International Journal of Heat and Mass Transfer, Vol. 50, pp. 479–49, 2007.

    128. K. Kahveci, Numerical simulation of natural convection in a partitioned enclosure using PDQ method, International Journal of  Numerical Methods for Heat & Fluid Flow, Vol. 17, pp. 439-456, 2007.

    129. D.C. Lo, D.L. Young, C.C. Tsai, High resolution of 2D natural convection in a cavity by the DQ method, Journal of Computational and Applied Mathematics, Vol. 203, pp. 219 – 236, 2007.

    130. S. Jian-An  and Z. Zheng-You, Application of Differential Quadrature Method to Solve Entry Flow of Viscoelastic Second-Order Fluid, International Journal for Numerical Methods in Fluids, Vol. 30, pp. 1109 – 1117, 2009.

    131. J. Sun and ZH. Zhu, Upwind local differential quadrature method for solving incompressible viscous flow,  Computer  Methods in Applied Mechanic and Engineering, Vol. 188, pp. 495-504, 2000.

    132. C. Shu and K.H.A. Wee, Numerical simulation of natural convection in a square cavity by SIMPLE-generalized differential quadrature method, Computers & Fluids, Vol. 31, pp. 209-226, 2002.

    133. Z. Zong and Y. Lam, A Localized Differential Quadrature (LDQ) Method and its Application to the 2-d Wave Equation, Computational Mechanics, Vol. 29, pp. 382–391, 2002.

    134. C. Shu, L.Wang and Y.T. Chew, Numerical Computation of Three-Dimensional Incompressible Navier–Stokes Equations in Primitive Variable form by DQ Method, International Journal for Numerical Methods in Fluids, Vol. 43, pp. 345–368, 2003.

    135. T.C. Fung, Stability and Accuracy of Differential Quadrature Method in Solving Dynamic Problems, Computer Methods in Applied Mechanics and Engineering, Vol. 191, pp. 1311–1331, 2002.

    136. M.R. Hashemi, M.J.Abedini and P.Malekzadeh, Numerical Modeling of Long Waves in Shallow Water Using Incremental Differential Quadrature Method, Ocean Engineering, Vol. 33, pp. 1749–1764, 2006.

    137. P.  Malekzadeh and H. Rahideh, IDQ Two-Dimensional Nonlinear Transient Heat Transfer Analysis of Variable Section Annular Fins,  Energy Conversion and Management, Vol. 48, pp. 269–276, 2007.

    138. M.R. Golbahar Haghighi, M. Eghtesad, P. Malekzadeh, Coupled DQ–FE Methods for Two Dimensional Transient Heat Transfer Analysis of Functionally Graded Material, Energy Conversion and Management, Vol. 49, pp. 995–1001, 2008.

    139. P. Malekzadeh, and H. Rahideh, Two-Dimensional Nonlinear Transient Heat Transfer Analysis of Variable Section Pin Fins, Energy Conversion and Management, Vol. 50, pp. 916–922, 2009.



تحقیق در مورد پایان نامه حل جریان جابجایی آزاد گذرا حول کره با استفاده از DQ-IDQ, مقاله در مورد پایان نامه حل جریان جابجایی آزاد گذرا حول کره با استفاده از DQ-IDQ, پروژه دانشجویی در مورد پایان نامه حل جریان جابجایی آزاد گذرا حول کره با استفاده از DQ-IDQ, پروپوزال در مورد پایان نامه حل جریان جابجایی آزاد گذرا حول کره با استفاده از DQ-IDQ, تز دکترا در مورد پایان نامه حل جریان جابجایی آزاد گذرا حول کره با استفاده از DQ-IDQ, تحقیقات دانشجویی درباره پایان نامه حل جریان جابجایی آزاد گذرا حول کره با استفاده از DQ-IDQ, مقالات دانشجویی درباره پایان نامه حل جریان جابجایی آزاد گذرا حول کره با استفاده از DQ-IDQ, پروژه درباره پایان نامه حل جریان جابجایی آزاد گذرا حول کره با استفاده از DQ-IDQ, گزارش سمینار در مورد پایان نامه حل جریان جابجایی آزاد گذرا حول کره با استفاده از DQ-IDQ, پروژه دانشجویی در مورد پایان نامه حل جریان جابجایی آزاد گذرا حول کره با استفاده از DQ-IDQ, تحقیق دانش آموزی در مورد پایان نامه حل جریان جابجایی آزاد گذرا حول کره با استفاده از DQ-IDQ, مقاله دانش آموزی در مورد پایان نامه حل جریان جابجایی آزاد گذرا حول کره با استفاده از DQ-IDQ, رساله دکترا در مورد پایان نامه حل جریان جابجایی آزاد گذرا حول کره با استفاده از DQ-IDQ

ثبت سفارش
تعداد
عنوان محصول
بانک دانلود پایان نامه رسا تسیس