پایان نامه بهبود الگوریتم GM-PHD به منظور ردیابی چند هدف و چند سنسور با کمک تخمین بایاس

word
105
6 MB
32180
مشخص نشده
کارشناسی ارشد
قیمت: ۱۰,۵۰۰ تومان
دانلود فایل
  • خلاصه
  • فهرست و منابع
  • خلاصه پایان نامه بهبود الگوریتم GM-PHD به منظور ردیابی چند هدف و چند سنسور با کمک تخمین بایاس

    پایان نامه‌ برای دریافت درجه‌ی کارشناسی ارشد «M.Sc. »

    رشته تحصیلی: برق

    گرایش: مخابرات

    چکیده

    در این پایان نامه مشکلات ردیابی چند هدفه و چند سنسور، با استفاده از قاعده مجموعه ذرات تصادفی مورد بررسی قرار می‌گیرد. فرضیه چگالی احتمال (PHD) بازگشتی به صورت دینامیکی اجرا می‌شود. این حالت دینامیکی به وسیله تلفیق مقدار بایاس انتقالی با تابع شدت انجام می‌گردد. بایاس دینامیکی را به صورت گوسی خطی در تابع شدت  فرض کرده ایم. اجرا فیلتر گوسی به صورت اجزا گوسی فرم بسته می‌باشد. موقعیت هدف و مقدار بایاس انتقالی به واسطه تابع صحت در هر مرحله با هم کوبل می‌شوند. استفاده از فیلتر دو مرحله‌ای کالمن منجر به کاهش قابل توجهی  پیچیدگی محاسبات می‌شود. در اینجا دو مثال برای بررسی فیلتر پیشنهادی فراهم شده است.

     

    کلمات کلیدی:

    ردیابی چند هدف، فیلتر فرضیه چگالی احتمال، تخمین بایاس

    مقدمه

    از آنجایی که در ردیابی اهداف با استفاده از داده‌های دریافتی از یک سنسور، خطای ثابت و نویز وجود دارد. برای کاهش این خطاها می‌توان از چند سنسور استفاده کرد. اما استفاده از چند سنسور، مشکل یکسان نبودن خطای بایاس را پیش‌رو  دارد. که این خطا با مقدار واقعی موقعیت هدف تلفیق شده است و در نتیجه امکان تخمین زدن موقعیت صحیح اهداف به وسیله چند سنسور در مختصات مشترک وجود ندارد. از این‌رو برای کاهش خطای سنسور نیاز داریم که مقدار بایاس هر سنسور را تخمین بزنیم و در  نهایت با کم کردن خطای بایاس از مقدار داده اندازه گیری شده توسط سنسور، موقعیت صحیح هدف را  در مختصات مشترک تخمین بزنیم. در اینجا مشکلات پیش‌رو  در ردیابی اهداف را با استفاده از چند سنسور و تخمین بایاس مورد بررسی قرار می‌دهیم.

    1-1    بیان مسأله

    در این پایان نامه مشکلات ردیابی چند هدفه و چند سنسور با استفاده از قاعده مجموعه ذرات تصادفی مورد بررسی قرار می‌گیرد. قضیه چگالی احتمال (PHD[1]) بازگشتی به صورت دینامیکی اجرا می‌شود که این حالت دینامیکی به وسیله تلفیق مقدار بایاس انتقالی با تابع شدت انجام می‌گردد.

    فیلتر GM-PHD توانایی تخمین تعداد و وضعیت اهداف، براساس مشاهدات نویزی و در حضور اهداف کاذب را دارد. با این وجود در شرایط تصادم که اهداف از روی یکدیگر عبور می کنند، فیلتر GM-PHD با مشکل مواجه شده و کارایی خود را از دست می دهد. از طرف دیگر جبران خطای ثبت شده در یکپارچگی داده های‌ دریافتی از چند سنسور موضوع مهمی است ، صرف نظر از آنکه اندازه گیری آنها به صورت یکپارچه مرکزی و یا توزیع شده باشد.

    روش‌های‌ ‌مختلفی برای بایاس سنسور‌ها ‌وجود دارد به طور مثال:

    بایاس انتقالی

    بایاس چرخشی

    بایاس انتقالی و چرخشی (Sudano, 1993).

    در اینجا به دنبال انتخاب بایاس مناسب از نظر سرعت پاسخ دهی و میزان دقت در ردیابی چند هدف، به وسیله دریافت داده‌ها ‌از چند سنسور در مختصات 2 بعدی با کمک فیلتر PHD هستیم.

    مشکل تخمین زدن اندازه بایاس ناشناخته مورد توجه بسیاری قرار گرفته است. اگر تخمین زدن مقدار بایاس به طور صحیح امکان پذیر باشد، اندازه گیری چند سنسور را می‌توان در قالب مختصات مشترک به کار برد. در شکل ‏1‑1 اندازه گیری چند سنسور بدون ثبت خطا را می‌بینید

     

    مثلث‌ها ‌نشان دهنده مکان هر سنسور در مختصات مشترک، دایره‌ها نشان دهنده موقعیت اصلی اهداف و مربع‌ها ‌نشان دهنده اندازه‌های‌ ‌تولید شده هر سنسور می‌باشند.

    برای رفع مشکل تخمین بایاس ناشناخته، روش‌های‌ ‌گوناگونی پیشنهاد شده است.

    روش احتمال صحت[1]

     روش فیلتر کالمن

    که از این روشها، روش فیلتر کالمن مورد توجه بسیاری قرار گرفته است.

    با ترکیب موقعیت هدف و مقدار بایاس در‌یک بردار واحد و با استفاده از فیلتر کالمن توسعه ‌یافته[2] می‌توان مقدار بایاس را تخمین زد.

    هر چند که از نظر محاسباتی عملی و عددی، اجرا به وسیله ASKF[3] ممکن می‌باشد اما مشکلاتی از قبیل بدحالتی[4] به وجود می‌آورد. برای کاهش این پیچیدگی فردلند[5], تخمین دو مرحله‌ای ‌را با جدا کردن بایاس از موقعیت هدف می‌توان پیشنهاد کرد (Friedland, 1969). زمانی که‌ یک رابطه‌ی خاص بین پارامترهای آغازین از 2 فیلتر بر قرار باشد، این تخمین دو مرحله‌ای ‌با تخمین‌ یک مرحله‌ای ‌ASKF برابر است (Ignagni, 1981).

    در اینجا لازم به ذکر است که مشکل بسیاری از روش‌های‌ ‌موجود، عدم قطعیت در اندازه گیری منابع می‌باشد، که اغلب در ردیابی‌های‌ ‌چند هدفه ایجاد می‌شود. اگر چه تکنیک‌هایی از جمله احتمال داده مشترک[6] و ردیابی چند احتمالی[7] که تاکنون بدست آمده است، را می‌توان استفاده نمود. اما ممکن است به دلیل در نظر نگرفتن اثر بایاس، نتیجه مطلوبی نداشته باشند.

    اخیراً مجموعه تئوری مجموعه ذرات آماری[8] برای مقابله با مشکلات ردیابی چند هدفه در ارتباط داده‌ها ‌استفاده شده است (Mahler, MA, 2007). ساختار مجموعه ذرات آماری به گونه‌ای ‌است که موقعیت هدف و مقدار بایاس را به عنوان 2 مجموعه‌ی متناهی تصادفی[9] الگو برداری می‌کند و در نتیجه مشکل ردیابی اهداف ناشناخته در زمان‌های‌ ‌گوناگون در محیط هایی که دارای پارازیت می‌باشند، به طور طبیعی حل می‌شود. علاوه بر این ردیابی چند هدفه را می‌توان در چارچوب بیزین با ایجاد چگالی انتقال و تابع صحت[10] چند هدفه بیان کرد.

     

    Abstract

    In this Thesis, Multi-Objective And Multi-Sensor Tracking problem, Using a base set of random particles are also studied. Probability hypothesis density (PHD) dynamic running recessive. The dynamic state of the modulation transfer function of the bias intensity reduction. Under the linear Gaussian assumptions on the bias dynamics, the Gaussian mixture implementation is used to give closed-form expressions. As the target state and the translational measurement bias are coupled through the likelihood in the update step, The use of two-stage Kalman filter leads to a significant reduction in the computational complexity. Two examples are provided to verify the proposed filter.

     

    Key word:

    Multi-target tracking, Probability hypothesis density filter, Bias Estimation

  • فهرست و منابع پایان نامه بهبود الگوریتم GM-PHD به منظور ردیابی چند هدف و چند سنسور با کمک تخمین بایاس

    فهرست:

    عنوان                                                                                                                                        صفحه

    چکیده. 1

    مقدمه......................................................................................................................................................................................... ...... 2

    فصل اول: کلیات.. 3

    1-1    بیان مسأله.. 4

    1-2    اهداف تحقیق.. 8

    1-3    فرضیه ها 8

    1-4    پیشینه‌ی تحقیق.. 8

    1-5    روش تحقیق.. 9

    فصل دوم: سابقه تحقیق.. 10

    مقدمه................................................................................................................................................................................................ 11

    2-1    مدل ردیابی چند هدفه به وسیله فیلتر بیزین.. 11

    2-2    فیلتر گوسی.. 13

    2-2-1     مدل ردیابی چند هدفه به وسیله فیلتر PHD... 14

    2-3    فیلتر مونت‌کارلو. 22

    2-3-1     مونت کارلو ترتیبی.. 23

    2-4    فیلتر SMC-PHD با ثبت خطا 30

    2-4-1     بررسی مشکل ثبت خطا 34

    2-4-2     شبیه سازی SMC-PHD با ثبت خطا 36

    فصل سوم: GM-PHD با کمک تخمین بایاس... 44

    مقدمه    45

    3-1    فیلتر GM-PHD با کمک تخمین بایاس برای اهداف خطی.. 50

    3-1-1     مرحله اول: پیش بینی.. 50

    3-1-2     مرحله دوم: به روز رسانی.. 51

    3-1-3     مرحله سوم: هرس و ادغام اعضای گوسی.. 56

    3-1-4     مرحله چهارم: تخمین موقعیت هدف و تخمین بایاس سنسور 60

    3-2    فیلتر GM-PHD با کمک تخمین بایاس برای ردیابی اهداف غیر خطی(مانوری) 61

    3-2-1     مرحله اول: تقریب BFG... 61

    3-2-2     مرحله دوم: پیش بینی.. 65

    3-3    معیار ارزیابی انواع فیلتر. 66

    3-4    همگرایی خطا PHD... 68

    3-5    اجرا فیلتر GM-PHD با کمک تخمین بایاس.... 73

    3-5-1     الگوریتم اجرا GM-PHD با کمک تخمین بایاس برای اهداف خطی.. 73

    3-5-2     الگوریتم اجرا GM-PHD با کمک تخمین بایاس برای اهداف غیر خطی.. 74

    فصل چهارم: شبیه سازی. 75

    مقدمه    76

    4-1    شبیه سازی 1. 76

    4-2    شبیه سازی 2. 85

    فصل پنجم: نتیجه گیری و پیشنهادها 94

    5-1 نتیجه گیری.. 95

    5-2    پیشنهادها 98

    منابع و مآخذ. 99

    چکیده‌ی انگلیسی.. 1

    منبع:

     

    - Alspach, D. (1970). A Bayesian approximation technique for estimation and control of discrete time systems. Univ. Calif.

    - Anderson , B., & Moore, J. (1979). Optimal Filtering. Englewood Cliffs.

    - Bdddey, A., & van Lieshout, M. (1992). ICM for object recognition. Springer.

    - Clark, D., & Bell, J. (Jul.2006). Convergence results for the particle PHDfilter. IEEE Trans. Signal Process, 54(7), 2652–2661.

    - Clark, D., & Bell, J. (Oct. 2005). Bayesian multiple target tracking in forward scan sonar images using the PHD filter. Proc. Inst. Elect. Eng.—Radar, Sonar, Navigation, 152(5), 327–334.

    - Clark, D., & Vo, B. (2007). Convergence analysis of the Gaussian mixture PHD filter. IEEE Transactions on Signal Processing, 55(4), 1204–1211.

    - Clark, D., Panta, K., & Vo, B. (Jul 2006). The GM-PHD filter multiple target tracker. Information Fusion. Florence, Italy.

    - Clark, D., Ruiz, I., Petillot, Y., & Bell, J. (2007). Particle PHD filter multiple target tracking in sonar image. IEEE Trans. Aerosp. Electron. Syst, 43(1), 409–416.

    - Clark, D., Vo, B., & Bell, J. (Apr 2006). GM-PHD filter multi-target tracking in sonar images. presented at the SPIE Defense Security Symp, 17–21.

    - Dana, M. (MA 1990). Registration: a prerequisite for multiple sensor tracking.Multitarget multisensor tracking. In advanced applications (pp. 155–185). Norwood: ArtechHouse Publishers,.

    - Doucet, A., De Freitas, N., & Gordon, N. (May 2001). Sequential Monte Carlo Methods in Practice. Springer Springer-Verlag.

    - El-Fallah, A., & Mahler, R. (May 2011). Bayesian unified registration and tracking. Proceedings of the SPIE Conference on Signal Processing, Sensor Fusion and Target Recognition, 8050, 1–11.

    - Friedland, B. (1969). Treatment of bias in recursive filtering. IEEE Transactions on Automatic Control 14 (4), 14(4), 359–367.

    - Geyer, C. (1999). Likelihood inference for spatial point processes. Stochastic Geometry likelihood and computation, 79-140.

    - Goodman, I., Mahler, R., & Nguyen, H. (1997). Mathematics of Data Fusion. Kluwer Academic Publishers.

    - Grimmett, G., & Stirzaker, D. (2011). One Thousand Exercises in Probability. London: Oxford University Press.

    - Hernandez, M., Ristic, B., Farina, A., & Sathyan, T. (2008). Performance measure for Markovian switching systems using best bestfitting Gaussian distributions. IEEE Transactions on Aerospace and Electronic Systems, 44 (2), 724–747.

    - Herrero, J., Portas, J., & Corredera, J. (2007). On-line multi-sensor registration for data fusion on airport surface. IEEE Trans. Aerosp. Electron. Syst, 43(1), 356–370.

    - Ignagni, M. (1981). An alternate derivation and extension of Friedland’stwo-stage Kalman estimator. IEEE Transactions on Automatic Control, 26(3), 746–750.

    - Ikoma, N., Uchino, T., & Maeda, T. (Aug 2004). Tracking of feature points in image sequence by SMC implementation of PHD filter. in Soc. Instrument and Control Engineers (SICE) 2004 Annu. Conf, 2, 1696–1701.

    - Johansen, A., Singh, S., Doucet, A., & -N, B. (Jun. 2006). Convergence of the SMC implementation of the PHD filter. Method. Comput. Appl. Probab, 8(2), 265–291.

    - Julier, S., & Uhlmann, J. (1996). A general method for approximating nonlinear transformations of probability distributions. RRG, Eng. Sci. Dep., Univ. Oxford, Oxford, U.K.,.

    - Julier, S., & Uhlmann, J. (1997). A new extension of the Kalman filter to nonlinear systems. in Int. Symp. Aerosp./Defense Sensing, Simultaneous Controls, Orlando, FL.

    - Li, X., & Jilkov, V. (April 2000). A survey of maneuvering target tracking: dynamic models. Proc. 2000 SPIE Conf. on Signal and Data Processing of Small Targets, 4048, 212–235.

    - Lian, F., Han, C., Liu, W., & Chen, H. (2011). Joint spatial registration an multi-target tracking using an extended probability hypothesis density filter. IET Radar, Sonar and Navigation, 5(4), 441–448.

    - Lo, H. (1972). Finite-dimensional sensor orbits and optimal non-linear filtering. IEEE Trans. Inf. Theory, IT-18(5), 583–588.

    - Ma, W., Singh, S., & Vo, B. (2004). Tracking multiple speakers with random sets. Proceedings of the International Conference on Acoustics, Speech and Signal Processing, (pp. 357–360). Montreal, Canada.

    - Mabler, R. (June 2000). A theoretical foundation for the Stein-Wmter Probability Hypothesis Density (PHD) multi-target tracking approach. Pmc.2002 MSS Nat? Symp. on Sensor and Data Fusion, 1. San Antonio TX.

    - Maggio, E., Taj, M., & Cavallaro, A. (2008). Effcient multitarget visual tracking using random finite sets. IEEE Trans. Circuits Syst. Video Technol, 18(8), 1016–1027.

    - Mahler, R. (1994). Global integrated data fusion. Proc. 7th Nat. Symp. on Sensor Fusion, 1, 187-199.

    - Mahler, R. (2000). Approximate multisensor-multitarget joint detection, tracking and identification using a first order multitarget moment statistic. IEEE lhm. AES.

    - Mahler, R. (2003). Multi-target Bayes filtering via first-order multi-target moments. IEEE Trans. Aerosp. Electron. Syst, 39(4), 1152–1178.

    - Mahler, R. (2010). Approximate multisensor CPHD and PHD filters. Proceedings of the 13th International Conference on Information Fusion, 1-8.

    - Mahler, R. (MA, 2007). Statistical Multisource-Multitarget Information Fusion. Artech House, Norwood,.

    - Mahler, R. (March 2000). An Introduction to Multisource-Multitarget Statistics and Applications. Lockheed Martin Technical Monograph.

    - Nagappa, S., & Clark, D. (May 2011). On the ordering of the sensors in the iterated-probability hypothesis density (PHD) filter. Proceedings of the SPIE Conference on Signal Processing, Sensor Fusion and Target Recognition, 8050, 1-6.

    - Okello, N., & Ristic, B. (2003). Maximum likelihood registration for multiple dissimilar sensors. IEEE Trans. Aerosp. Electron. Syst, 39(3), 1074–1083.

    - Pao, L., & Frei, C. (1995). A comparison of parallel and sequential implementation of a multisensor multitarget tracking algorithm. American Control Conf, (pp. 1683–1687). Seattle, Washington.

    - Pham, N., Huang, W., & Ong, S. (2007). Multiple sensor multiple object tracking with GMPHD filter. Proceedings of the 10th International Conference on Information Fusion, 1–7.

    - Ruan, Y., & Willett, P. (2004). The turbo PMHT. IEEE Trans. Aerosp. Electron.Syst, 40(4), 1388–1398.

    - Rynne, B., & Youngson, M. (2000). Linear Functional Analysis. New York: Springer-Verlag.

    - Salmond, D. (n.d.). Tracking in uncertain environments. 1989: Univ. Sussex, Sussex, U.K.

    - Schuhmacher, D., Vo, B., & Vo, B. (2008). A consistent metric for performance evaluation of multi-object filters. IEEE Trans. Sign Process, 86(8), 3447–3457.

    - Shalom, Y., & Li, X. (1995). Multitarget-Multisensor Tracking. Principles and Techniques Storrs.

    - Sorenson, H., & Alspach, D. (1971). Recursive Bayesian estimation using Gaussian sum. Automatica, 7, 465–479.

    - Sudano, J. (1993). A least square algorithm with covariance weighting for computing the translational and rotational errors between two radar sites". Proceedings of the IEEE Aerospace and Electronics Conference, 383–387.

    - Tobias, M., & Lanterman, A. (2005). Probability hypothesis density-based multi-target tracking with bistatic range and Doppler observations. IEE Proc. Radar Sonar Navig, 152(3), 195–205.

    - Vo, B., & Ma, W. (2006). “The Gaussian mixture probability hypothesis density filter. ,” IEEE Transactions on Signal Processing, 54(11), 4091–4104.

    - Vo, B., & Ma, W. (Jul 2005). A closed-form solution to the probability hypothesis density filter. Inf. Fusion, 2, pp. 25–28. Philadelphia.

    - Vo, B., Singh, S., & Doucet, A. (2003). Sequential Monte Carlo implementation of the PHD filter for multi-target tracking. Proc. FUSION 2003, 792–799.

    - Vo, B., Singh, S., & Doucet, A. (2005). Sequential Monte Carlo methods for multi-target filtering with random finite sets. IEEE Trans. Aerosp. Electron. Syst, 41(4), 1224–1245.

    - Vo, B., Vo, B., & Cantoni, A. (2009). The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Transactions on Signal Processing 57 (2), 57(2), 409–423.

    - Williams, J. (2003). Gaussian Mixture reduction for tracking multiple maneuvering targets in clutter. Master’s thesis, Grad. School of Eng. and Management, Air Force Inst. Technol., Wright-Patterson Air Force Base, OH.

    - Zhou, Y., Leung, H., & Martin, B. (1999). Sensor alignment with earthcentered earth-fixed coordinate system. IEEE Trans. Aerosp.Electron. Syst, 35(2), 410–416



تحقیق در مورد پایان نامه بهبود الگوریتم GM-PHD به منظور ردیابی چند هدف و چند سنسور با کمک تخمین بایاس, مقاله در مورد پایان نامه بهبود الگوریتم GM-PHD به منظور ردیابی چند هدف و چند سنسور با کمک تخمین بایاس, پروژه دانشجویی در مورد پایان نامه بهبود الگوریتم GM-PHD به منظور ردیابی چند هدف و چند سنسور با کمک تخمین بایاس, پروپوزال در مورد پایان نامه بهبود الگوریتم GM-PHD به منظور ردیابی چند هدف و چند سنسور با کمک تخمین بایاس, تز دکترا در مورد پایان نامه بهبود الگوریتم GM-PHD به منظور ردیابی چند هدف و چند سنسور با کمک تخمین بایاس, تحقیقات دانشجویی درباره پایان نامه بهبود الگوریتم GM-PHD به منظور ردیابی چند هدف و چند سنسور با کمک تخمین بایاس, مقالات دانشجویی درباره پایان نامه بهبود الگوریتم GM-PHD به منظور ردیابی چند هدف و چند سنسور با کمک تخمین بایاس, پروژه درباره پایان نامه بهبود الگوریتم GM-PHD به منظور ردیابی چند هدف و چند سنسور با کمک تخمین بایاس, گزارش سمینار در مورد پایان نامه بهبود الگوریتم GM-PHD به منظور ردیابی چند هدف و چند سنسور با کمک تخمین بایاس, پروژه دانشجویی در مورد پایان نامه بهبود الگوریتم GM-PHD به منظور ردیابی چند هدف و چند سنسور با کمک تخمین بایاس, تحقیق دانش آموزی در مورد پایان نامه بهبود الگوریتم GM-PHD به منظور ردیابی چند هدف و چند سنسور با کمک تخمین بایاس, مقاله دانش آموزی در مورد پایان نامه بهبود الگوریتم GM-PHD به منظور ردیابی چند هدف و چند سنسور با کمک تخمین بایاس, رساله دکترا در مورد پایان نامه بهبود الگوریتم GM-PHD به منظور ردیابی چند هدف و چند سنسور با کمک تخمین بایاس

ثبت سفارش
تعداد
عنوان محصول
بانک دانلود پایان نامه رسا تسیس