پایان نامه بیان و تخلیص پروتئین نوترکیب FGFR2b و بررسی تغییرات ساختاری آن بر اثر برهمکنش با فلزات سمی

word
121
6 MB
32092
1393
کارشناسی ارشد
قیمت: ۱۲,۱۰۰ تومان
دانلود فایل
  • خلاصه
  • فهرست و منابع
  • خلاصه پایان نامه بیان و تخلیص پروتئین نوترکیب FGFR2b و بررسی تغییرات ساختاری آن بر اثر برهمکنش با فلزات سمی

    پایان نامه کارشناسی ارشد

    بیوتکنولوژی پزشکی

    چکیده

    زمینه: عوامل رشد فیبروبلاست (FGF) و گیرنده های آنها (FGFR) نقش اساسی در سلول ایفا می کنند. عدم تنظیم در مسیرهای سیگنالینگ FGF / FGFR با بسیاری از ناهنجاری ها و گسترش سرطان همراه است. از این گروه گیرنده‏ فاکتور رشد فیبروبلاستی نوع دو در مسیر پیام‏رسانی سلولی و تنظیم فرآیندهای مهم زیستی از جمله تمایز و تکثیر سلولی نقش اساسی دارد. اختلال در انتقال پیام این گیرنده با چندین اختلال پاتولوژیکی انسانی مرتبط می باشد. در این میان مسمومیت با فلزات سمی نیز یکی از مشکلات عمده در زیست شناسی سلولی است که اثرات آنها بر مسیرهای مختلف سیگنالینگ به اثبات رسیده است.

    هدف: این مطالعه به منظور تخلیص ناحیه کینازی FGFR2b و بررسی اثر فلزات سمی سرب، کادمیوم، نیکل و آلومینیوم بر ساختار ناحیه کینازی رسپتور فاکتور رشد فیبروبلاستی نوع دو انجام شد.

    مواد و روش‏ها: در این مطالعه تجربی پروتئین نوترکیب با استفاده از پلاسمیدpLEICS-01 ، باکتری BL21، القائ IPTG ، الکتروفورز و ستون حاوی Ni2+ -NTA بیان و خالص شد. فعال بودن نمونه پروتئین بعد از دیالیز توسط تعامل با ناحیه SH2 فسفولیپاز(PLC)C طبیعی و موتان توسط روش PAGE بررسی شد. طیف فلوئورسانس، CD, FTIR و دناتوراسیون شیمیایی پروتئین خالص شده در حضور غلظت های مختلف سرب، کادمیوم، نیکل و آلومینیوم بررسی و ارزیابی گردید.

    یافته‏ها: بررسی SDS-PAGE قبل و بعد از القا شدن نشان داد که پروتئین بیان شده در دمای 20 درجه سانتی گراد محلول است. نتایج PAGE فعال بودن پروتئین خالص شده را تأیید کرد. بررسی طیف سنجی فلوئورسانس کاهش شدت نشر را با افزایش تدریجی غلظت هر چهار فلز سمی نشان داد. طیف CD نشان داد ناحیه ی کینازی مورد مطالعه ما دارای ترکیب بتای بیشتری نسبت به آلفا می باشد و نیز حضور کادمیوم، نیکل و آلومینیوم در محلول، ساختار دوم کیناز را تغییر نمی دهد، ولی سرب قادر به تغییر این ساختار می باشد. آزمایش انجام شده توسط FTIR نیز اثر سرب را تایید کرد. دناتوراسیون شیمیایی ساختار سوم در حضور کادمیوم، نیکل و آلومینیوم ناحیه کینازی را تغییر نداد. ولی این تغییر در حضور سرب مشاهده شد.

    بحث و نتیجه‏گیری: باتوجه به یافته ها، ناحیه‏ کینازی گیرنده‏ نوترکیب عامل رشد فیبروبلاستی 2b که یک پروتئین 38 کیلودالتونی است تولید و خالص گردید و نشان داده شد که به صورت محلول و فعال است. تغییرات ساختار سوم و دوم ناحیه کینازی موجب ناپایدار شدن آن در حضور سرب گردید. این ناپایداری در سطح مولکولی می تواند موجب اختلال در مسیر پیام رسانی سلول شود. گرچه این ناپایداری در حضور کادمیوم، نیکل و آلومینیوم مشاهده نشد.

    کلیدواژه‏ها: گیرنده‏ فاکتور رشد فیبروبلاستی، ناحیه کینازی، سیگنالینگ، فلزات سمی، طیف سنجی فلوئورسانس، CD،  FTIR

    فصل اول                            مقدمه و اهمیت موضوع

    مقدمه

    1-1-1- فاکتور رشد فیبروبلاستی

    فاکتور رشد فیبروبلاستی یا FGF (شکل 1) پروتئینی است که در بسیاری از فرآیندهای سلولی نظیر تقسیم سلولی، تکوین جنین، رگ زایی و بسیاری از فرآیندهای دیگر نقش دارد. به علاوه، این پروتئین به عنوان یک فاکتور مهم به محیط کشت سلولهای بنیادی جنینی انسانی اضافه می شود تا بتوان سلول ها را در حالت بنیادینگی و بدون تمایز حفظ و تکثیر کرد (1).

    1-1-2- گیرنده های فاکتور رشد فیبروبلاست

    گیرنده های فاکتور رشد فیبروبلاست(FGFR)  در مسیر پیام رسانی سلول نقش کلیدی درتنظیم فرآیندهای زیستی از جمله تکثیر سلولی، بقا، مهاجرت و تمایز سلولی ایفا می کنند (2). متابولیسم سلولی، ترمیم بافتی، رگ زایی و توسعه ی مراحل جنینی از جمله وظایفی هستند که در دوران جنینی و بزرگسالی در بدن توسط این گیرنده ها با اتصال به فاکتورهای رشد فیبروبلاستی (FGF) انجام می شود(3). فرم های موتاسیون یافته ی گیرنده های فاکتور رشد فیبروبلاستی در سرطان های متعددی از جمله سرطان ریه، پستان، معده، مغز، سر و گردن، پروستات، کولون، رحم، مثانه و هم چنین مولتیپل میلوما شناخته شده است(6-4). عدم تعادل در انتقال پیام (سیگنالینک) FGFR با چندین اختلال پاتولوژیک انسانی مانند سندرم های اسکلتی مرتبط است (4). در این میان، FGFR2، نقش مهمی را در رشد و ترمیم بافتی بویژه استخوان و عروق خونی دارد.

    شکل 1: نحوه عملکرد کلی FGF و .FGFR

    1-1-3- گیرنده های فاکتور رشد فیبروبلاست نوع 2  

    پروتئین نوترکیب FGFR2b (شکل2) متعلق به خانواده ی گیرنده های فاکتور رشد فیبروبلاستی (FGFR)  است. این پروتئین دارای 334 اسید آمینه و وزن مولکولی تقریبی 38 کیلودالتون می باشد. تغییرات ژنتیکی در این گیرنده با سرطان های اندومتریال، تخمدان و پستان در ارتباط می باشد.  قابل ذکر است که نوع جهش یافته این گیرنده در تعدادی از سرطان ها گزارش شده است که با افزایش پیام مرتبط با این گیرنده در ارتباط می باشد(7).

    در این پروتئین نوترکیب با انتقال الگوی موتاسیون مشاهده شده در گیرنده بیان شده در سلول سرطانی، فرم فعال و نوترکیب ناحیه ی تیروزین کینازی پروتئین FGFR2b ایجاد شده است که دارای جهش های مورد نظر می باشد. قابل ذکر است که تهیه ی ناحیه ی تیروزین کینازی پروتئینFGFR2b  به صورت خالص این امکان را فراهم می کند که در مطالعات بعدی بتوان اطلاعاتی راجع به ساختار و نیز بررسی برهمکنش پروتئین و لیگاند از جمله اثر مهارکننده های مختلف را روی ناحیه ی کینازی این پروتئین به دست آورد.

    بر این اساس در این تحقیق، تغییرات ساختاری پروتئین نوترکیب FGFR2b بر اثر برهمکنش با فلزاتی که ذکر می  شود، بررسی می گردد.

    شکل 2: گیرنده فاکتور رشد فیبروبلاستی نوع 2.

    1-1-4- گیرنده های فاکتور رشد فیبروبلاستی تیروزین کینازی

    گیرنده‏های فاکتور رشد فیبروبلاستی متعلق به خانواده‏ای از گیرنده‏های تیروزین کینازی (شکل 3) هستند. این گیرنده ها دارای دو ایزو فرم b و  cمی باشند که هرکدام به ترتیب در بافت های اپی تلیال و مزانشیمال بیان می شوند. هم چنین هفت گیرنده‏ در خانواده ی گیرنده های فاکتور رشد فیبروبلاستی (شکل3) جای می گیرد که شامل FGFR1b، FGFR1c،FGFR2b ، FGFR2c، FGFR3b، FGFR3c و FGFR4 می‏باشد(8). این گیرنده ها در مسیر پیام‏رسانی سلول نقش کلیدی در تنظیم فرآیندهای زیستی از جمله تکثیر سلولی، بقا، مهاجرت و تمایز سلولی ایفا می‏کنند (9). همه آن‏ها دارای یک بخش داخل غشایی، یک ناحیه خارج سلولی متصل شونده به لیگاند و یک ناحیه داخل سلولی که خاصیت تیروزین کینازی دارد هستند. گیرنده ی FGFR2b ایزوفرم اپی تلیال گیرنده ی فاکتور رشد فیبروبلاستی است. ناحیه ی کینازی FGFR2b متشکل از 334 اسیدآمینه می باشد و دارای ساختار به صورت دو ناحیه ی کینازی N-terminal  و C-terminal است که توسط یک ناحیه ی اتصال دهنده انعطاف پذیر به هم مرتبط می شوند. این ناحیه ی اتصال دهنده حلقه ی فعال سازی نیز نامیده می شود که در عملکرد فسفریلاسیون تیروزین های ناحیه ی کیناز ی گیرنده نقش مهمی دارد. تقریبا %20 ژن‏های انسانی محصولاتی را کد می‏کنند که در مسیرهای پیام‏رسانی (سیگنالینگ) سلولی مشارکت دارند. تنظیم‏کننده‏های اصلی این مسیرها از طریق واکنش‏های فسفریلاسیون/ دفسفریلاسیون عمل می‏نمایند. آنزیم‏های تیروزین کیناز دسته‏ای از آنزیم‏ها هستند که مسئول فسفریلاسیون اسیدآمینه تیروزین روی پروتئین هدف خود هستند. دو خانواده از آنزیم‏های تیروزین کیناز وجود دارد که عبارتند از گیرنده های کینازی متصل به غشاء و کینازهای سیتوپلاسمی که گیرنده نیستند. ناحیه کاتالیتیکی از تیروزین کیناز شامل مکان اتصال به مولکول ATP  ویژه و مکان اتصال به سوبسترا است (10).

     

    Abstract

    Background: Fibroblast growth factor (FGF) and their receptors (FGFR) play an essential role in the cell. Non-regulated signaling pathways in FGF / FGFR is associated with many disorders and cancer. From the Department of fibroblast growth factor receptor type II in cellular signal transduction and regulation of important biological processes including cell proliferation and differentiation is essential. Impaired signaling of these receptors is associated with several human pathology. The toxic metal poisoning is one of the major problems in cell biology effects on different signaling pathways have been demonstrated.

    Objective: This study aimed to purify the kinase FGFR2b and the effect of toxic metals Lead, Cadmium, Nickel and Aluminum on the structure of fibroblast growth factor receptor kinase type II was performed.

    Materials and Methods: In this experimental study, using recombinant proteins, plasmid pLEICS-01, bacteria BL21, induction of IPTG, electrophoresis and column containing Ni² + -NTA was expressed and purified. Enabled by interaction with the SH2 protein sample after dialysis phospholipase C (PLC) normal and mutant were analyzed by PAGE. Fluorescence spectroscopy, CD, FTIR and chemical denaturation of purified protein in the presence of different concentrations of lead, cadmium, nickel and aluminum were evaluated.

    Results: SDS-PAGE before and after induction of protein expression showed that at 20 ° C in a solution. PAGE analysis of purified protein was confirmed to be activated. Fluorescence spectroscopy study of emission intensity increases gradually with increasing concentrations of each toxic metal found. CD spectra showed that the kinase domain of our study is a combination of beta than alpha and the presence of cadmium, nickel and aluminum in solution, the structure of the kinase does not change, but the lead is able to change this structure. FTIR also confirmed by testing the effects of lead. Chemical denaturation tertiary structure in the presence of cadmium, nickel and aluminum, unchanged kinase domain. But this change was observed in the presence of lead.

    Conclusion: According to the findings, the kinase domain of fibroblast growth factor receptor 2b is a recombinant protein produced was purified 38 kDa has been shown to be soluble and active. Changes in the tertiary structure of the kinase causes it to become unstable in the presence of lead. This instability at the molecular level can lead to impairment of the cellular signal transduction pathway. Although the instability in the presence of cadmium, nickel and aluminum were found.

    Keywords: Fibroblast growth factor receptor, Kinase, Signaling, Toxic metals, Fluorescence spectroscopy, CD, FTIR

  • فهرست و منابع پایان نامه بیان و تخلیص پروتئین نوترکیب FGFR2b و بررسی تغییرات ساختاری آن بر اثر برهمکنش با فلزات سمی

    فهرست:

     

    فصل اول     مقدمه و اهمیت موضوع. 3

    1-1- مقدمه. 4

    1-1-1- فاکتور رشد فیبروبلاستی.. 4

    1-1-2- گیرنده های فاکتور رشد فیبروبلاست.. 4

    1-1-3- گیرنده های فاکتور رشد فیبروبلاست نوع 2. 5

    1-1-4- گیرنده های فاکتور رشد فیبروبلاستی تیروزین کینازی.. 6

    1-1-5- فعال سازی کینازها از طریق ایجاد موتاسیون.. 8

    1-2- اهمیت موضوع وضرورت انجام تحقیق. 9

    1-3- اهداف طرح. 9

    1-3-1- هدف اصلی.. 9

    1-3-2- اهداف فرعی.. 9

    1-3-3- اهداف کاربردی.. 10

    1-3-4- فرضیات.. 10

    1-3-5- متغییرها.. 10

    فصل دوم      مروری بر متون گذشته. 11

    2-1- پروتئین. 12

    2-1-1- ساختمان پروتئین ها.. 13

    2-1-2- گیرنده های تیروزین کینازی.. 17

    2-1-3- فاکتورهای رشد فیبروبلاستی.. 18

    2-1-4- گیرنده های فاکتور رشد فیبروبلاستی.. 20

    2-1-5- گیرنده های فاکتورهای رشد فیبروبلاستی و اختلالات پاتولوژیکی.. 22

    2-1-6- مسیر پیام رسانی سلولی فاکتورهای رشد فیبروبلاستی.. 25

    2-1-7- تنظیم مسیر پیام رسانی فاکتور های رشد فیبروبلاستی.. 29

    2-2- فلز چیست؟. 31

    2-2-1- فلزات سمی.. 31

    2-2-3- سرب.. 32

    2-2-4-کادمیوم.. 32

    2-2-5- نیکل.. 33

    2-2-6-آلومینیوم.. 33

    2-7- تاثیر فلزات بر مسیرهای سیگنالینگ. 34

    2-7-1-ROS. 34

    2-7-2- MAPK.. 35

    2-7-3- PI3K/Akt 36

    2-7-4- HIF.. 37

    2-7-5- NF-kB.. 38

    2-7-6- NFAT. 39

    2-7-7- AP.. 40

    2-8- اثر ترکیبات فلزی بر مسیرهای سیگنالینگ و بیان ژن. 41

    2-8-1- سرب.. 41

    2-8-2- کادمیوم.. 43

    2-8-3- نیکل.. 46

    2-8-4- آلومینیوم.. 48

    2-9- پیشگویی ساختمان پروتئین ها. 50

    2-9-1- بررسی ساختار پروتئین ها.. 50

    2-9-2- مطالعه ی ساختاری پروتئین ها.. 51

    2-9-3- تکنیک های مطالعه ی ساختار پروتئین  ها.. 52

    2-9-4- تکنیک فلوئورسانس اسپکتروسکوپی.. 53

    2-9-5- تکنیک دورنگ نمایی حلقوی(CD) 56

    2-9-6- تکنیک ها و عوامل دناتوراسیون.. 57

    2-10- تکنیک های تولید و تخلیص پروتئین های نوترکیب. 60

    2-10-1- کاربرد پروتئین های نوترکیب. 60

    2-10-2- پروتئین های نوترکیب (Recombinant proteins ) 60

    2-10-3- تولید پروتئین های نوترکیب در گیاهان.. 63

    2-10-4- استفاده ازایشریشیاکلی به عنوان یک ارگانیسم میزبان برای تولید پروتئین   64

    2-10-5- خالص سازی پروتئین های نوترکیب.. 64

    فصل سوم   مواد و روش ها. 66

    3-1- مواد، تجهیزات و متغیر ها ی آزمایش. 67

    3-1-1- مواد مورد استفاده در آزمایش.. 67

    3-1-2- دستگاه ها و تجهزات مورد استفاده در آزمایش.. 68

    3-2- محلول ها و بافرها. 69

    3-2-1- تهیه ی استوک آمپی سیلین.. 69

    3-2-2- تهیه ی استوک IPTG.. 70

    3-2-3- تهیه ی بافر لیز کننده سلول جهت بررسی حلالیت پروتئین.. 70

    3-2-4- تهیه ی بافر لیز کننده  سلول جهت تخلیص پروتئین.. 70

    3-2-5- تهیه ی محلول ژل پلی آکریل آمید 4%... 70

    3-2-6- تهیه ی محلول ژل پلی آکریل آمید 12%... 71

    3-2-7- تهیه ی محلول  APS10%... 71

    3-2-8- تهیه ی بافر الکترود x10  (Running buffer) 71

    3-2-9- تهیه ی بافر نمونه Sample Buffer)) 71

    3-2-10- تهیه ی محلول Tris-Hcl 5/0 مولار.. 72

    3-2-11- تهیه ی محلول Tris-Hcl 5/1 مولار.. 72

    3-2-12- تهیه ی Staining Buffer. 72

    3-2-13- تهیه ی Destaining Buffer. 73

    3-2-14- تهیه ی محلول آکریل آمید- بیس آکریل آمید.. 73

    3-2-15- تهیه بافر SDS. 73

    3-2-16- تهیه بافرA (Washing Buffer) 73

    3-2-17- تهیه بافر B (   (Eluting Buffer. 74

    3-2-18- تهیه بافر دیالیز.. 74

    3-2-19- تهیه استوک گوانیدین هیدروکلراید (GnHCl) 74

    3-2-20- تهیه استوک فلزات.. 74

    3-2-21- آماده سازی محیط های کشت باکتری.. 74

    3-3- روش انجام کار. 75

    3-3-1- نمایش ساختار پلاسمید نوترکیب pLEICS-01 و توالی ژنی ناحیه تیروزین کینازی پروتئین نوترکیب FGFR2b. 75

    3-3-2- مراحل تولید پروتئین نوترکیب.. 77

    3-3-3- تعیین غلظت پروتئین.. 83

    3-3-4- مطالعات اسپکتروسکوپی فلوئورسانس.. 83

    3-3-5- مطالعات اسپکتروسکوپی دورنگ نمایی حلقوی CD)) 85

    3-3-6- مطالعات اسپکتروسکوپی FTIR.. 86

    3-3-7- مطالعات دناتوراسیون شیمیایی با استفاده از اسپکتروسکوپی فلوئورسانس   87

             فصل چهارم یافته ها و نتایج................................................................................................................................................. ................................................................................................................................................. 88

    4-1- بررسی بیان پروتئین در دمای 37 درجه سانتی گراد. 88

    4-2- بررسی بیان پروتئین در دمای20 درجه سانتی گراد. 89

    4-3- بررسی  حلالیت پروتئین بیان شده دردو دمای20 و 37 درجه سانتی گراد. 90

    4-4- بررسی میزان خلوص پروتئین محلول شده. 91

    4-5- آنالیز SDS-PAGE بعد از دیالیز. 92

    4-6- بررسی عملکرد پروتئین خالص شده. 93

    4-7- بررسی ساختار سوم ناحیه‏ی تیروزین کینازی پروتئین نوترکیب FGFR2b 94

    4-8- بررسی اثر دناتوراسیون شیمیایی بر طول موج ماکزیمم نشر فلوئورسنس ذاتی ناحیه‏ی تیروزین کینازی پروتئین نوترکیب FGFR2b 98

    4-9- بررسی اثردناتوراسیون شیمیایی بر شدت نشر فلوئورسانس ذاتی ناحیه‏ی تیروزین کینازی پروتئین نوترکیب FGFR2b 101

    4-10- بررسی اثر سرب، کادمیوم، آلومینیوم و نیکل، بر روی ساختار دوم ناحیه‏ی تیروزین کینازی پروتئین نوترکیب FGFR2b 104

    فصل پنجم      بحث و نتیجه گیری.. 109

    5-1- بحث و نتیجه گیری. 110

    فهرست منابع: 116

    ….………………………………………………………………………………..Abstract

    منبع:

    . Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nature Reviews Drug Discovery. 2009; 8(3):235-53.

    2. Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine & growth factor reviews. 2005; 16(2):139-49.

    3. Powers CJ, McLeskey SW, Wellstein A. Fibroblast growth factors, their receptors and signaling. Endocrine-related cancer. 2000; 7(3):165-97.

    4. Kan S-h, Elanko N, Johnson D, Cornejo-Roldan L, Cook J, Reich EW, et al. Genomic screening of fibroblast growth-factor receptor 2 reveals a wide spectrum of mutations in patients with syndromic craniosynostosis. American journal of human genetics. 2002; 70(2):472-86.

    5. Knights V, Cook SJ. De-regulated FGF receptors as therapeutic targets in cancer. Pharmacology & therapeutics. 2010; 125(1):105-17.

    6. Katoh Y, Katoh M. FGFR2-related pathogenesis and FGFR2-targeted therapeutics (Review). International journal of molecular medicine. 2009; 23(3):307-11.

    7. Katoh M. Cancer genomics and genetics of FGFR2 (Review). International journal of oncology. 2008; 33(2):233-7.

    8. Kalinina J, Dutta K, Ilghari D, Beenken A, Goetz R, Eliseenkova AV, et al. The Alternatively spliced Acid Box Region Plays a Key Role in FGF Receptor Autoinhibition. Structure. 2012; 20(1):77-88

    9. Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005; 16(2):139-49

    10. Lemmon MA, Schlessinger J. Cell signaling by receptor-tyrosine kinases. Cell. 2010; 141(7):1117-34

    11. Arora A, Scholar EM. Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther. 2005 Dec; 315(3):971-9

    12. Gartside MG, Chen H, Ibrahimi OA, Byron SA, Curtis AV, Wellens CL, et al. Loss-of-function fibroblast growth factor receptor-2 mutations in melanoma. Mol Can Res. 2009; 7(1):41-54

    13. Chen F and Shi X. (2002). Crit. Rev. Oncol. Hematol. 42,105–121.

    14. Leonard SS, Harris GK and Shi X. (2004a). Free Radic. Biol. Med. 37, 1921–1942.

    15. Salnikow K, Su W, Blagosklonny M.V and et al. (2000). Cancer Res. 60, 3375–3378.

    16. David T Jones, (2000). Protein structure prediction in the post genomic era, Current Opinion in Structural Biology, 10:371–379

    17. Orengo CA, Michie AD, Jones S, Jones DT, Swindles MB and Thornton JM. (1997) “CATH- A Hierarchic Classification of Protein Domain Structures.” Structure. Vol 5. No 8. P.1093-1108.

    18. Darby NJ, Creighton TE 1993. Protein Structure, IRL Press.

    19. Mathews CK, Van Hold KE. 1996. Biochemistry (Second Edition), the Benjamin/Cumminge Publishing Company, Inc.

    20. Seo SY, Sharma VK, Sharma N. 2003. Mushroom tyrosinase: recent prospects. Jour. Agric Food Chem.

    21. Ijiri TW, Mahbub Hasan AK, Sato K. Protein-Tyrosine Kinase Signaling in the Biological Functions Associated with Sperm. J Signal Transduct. 2012; 2012:181560

    22. Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov. 2009; 8(3):235-53

    23. Lew ED, Furdui CM, Anderson KS, Schlessinger J. The precise sequence of FGF receptor autophosphorylation is kinetically driven and is disrupted by oncogenic mutations. Sci Signal. 2009; 2(58):ra6

    24. Suh YJ, Bae HS, Choi JY, Lee JH, Kim MJ, Kim S, et al. A novel FGFR2 mutation in tyrosine kinase II domain, L617F, in Crouzon syndrome. J Cell Biochem. 2014 Jan; 115(1):102-10

    25. Auciello G, Cunningham DL, Tatar T, Heath JK, Rappoport JZ. Regulation of fibroblast growth factor receptor signalling and trafficking by Src and Eps8. J Cell Sci. 2013 Jan 15; 126(Pt 2):613-24

    26. Orr-Urtreger A, Bedford MT, Burakova T, Arman E, Zimmer Y, Yayon A, et al. Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2). Dev Biol. 1993; 158(2):475-86

    27. Grose R, Dickson C. Fibroblast growth factor signaling in tumorigenesis. Cytokine & growth factor reviews. 2005; 16(2):179-86

    28. Kan S-h, Elanko N, Johnson D, Cornejo-Roldan L, Cook J, Reich EW, et al. Genomic screening of fibroblast growth-factor receptor 2 reveals a wide spectrum of mutations in patients with syndromic craniosynostosis. Am J Hum Biol. 2002; 70(2):472-86

    29. Dode C, Levilliers J, Dupont J-M, De Paepe A, Le De N, Soussi-Yanicostas N, et al. Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet. 2003; 33(4):463-5

    30. Rohmann E, Brunner HG, Kayserili Hl, Uyguner O, Nornberg G, Lew ED, et al. Mutations in different components of FGF signaling in LADD syndrome. Nat Genet. 2006; 38(4):414-7

    31. Luo J, Solimini NL, Elledge SJ. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell. 2009; 136(5):823-37

    32. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007; 446(7132):153-8

    33. Ruhe JE, Streit S, Hart S, Wong C-H, Specht K, Knyazev P, et al. Genetic alterations in the tyrosine kinase transcriptome of human cancer cell lines. Cancer Res. 2007; 67(23):11368-76

    34. Ibrahimi OA, Eliseenkova AV, Plotnikov AN, Yu K, Ornitz DM, Mohammadi M. Structural basis for fibroblast growth factor receptor 2 activation in Apert syndrome. Proceedings of the National Academy of Sciences. 2001; 98(13):7182-7

    35. Webster MK, Donoghue DJ. FGFR activation in skeletal disorders: too much of a good thing. TIG. 1997; 13(5):178-82

    36. Bcrgsagell PL. Frequent translocation t (4; 14) (p16. 3; q32. 3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet. 1997; 16:260-4

    37. Wang J, Stockton DW, Ittmann M. The fibroblast growth factor receptor-4 Arg388 allele is associated with prostate cancer initiation and progression. Clin Cancer Res. 2004; 10(18):6169-78

    38. Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov. 2009;8(3):235-53

    39. Kouhara H, Hadari YR, Spivak-Kroizman T, Schilling J, Bar-Sagi D, Lax I, et al. A lipid-anchored grb2-binding protein that links fgf-receptor activation to the ras/mapk signaling pathway.  Cell. 1997 May; 89(5):693-702

    40. Tomasovic A, Traub S, Tikkanen R.  Molecular networks in FGF signaling: flotillin-1 and cbl-associated protein compete for the binding to growth factor receptor substrate 2.  PLoS One. 2012; 7(1):29739  

    41. Manuvakhova M, Thottassery JV, Hays S, Qu Z, Rentz SS, Westbrook L, et al. Expression of the SNT-1/FRS2 phosphotyrosine binding domain inhibits activation of MAP kinase and PI3-kinase pathways and antiestrogen resistant growth induced by FGF-1 in human breast carcinoma cells. Oncogene. 2006 Sep; 25(44):6003-14

    42.Yun YR, Won JE, Jeon E, Lee S, Kang W, Jo H, et al. Fibroblast growth factors: biology, function and application for tissue regeneration. J Tissue Eng. 2010 Nov; 7:218142

    43. Gotoh N,  Manova K,  Tanaka S,  Murohashi M,  Hadari Y,  Lee A, et al. The Docking Protein FRS2α Is an Essential Component of Multiple Fibroblast Growth Factor Responses during Early Mouse Development. Mol Cell Biol. 2005 May; 25(10):4105–4116

    44. McLaughlin AP, De Vries GW. Role of PLCγ and Ca2+ in VEGF- and FGF-induced choroidal endothelial cell proliferation. Am J Physiol - Cell Physiology. 2001 Nov; 281: 1448-56

    45. Cotton LM, O'Bryan MK, Hinton BT. Cellular signaling by fibroblast growth factors (FGFs) and their receptors (FGFRs) in male reproduction. Endocr Rev. 2008 Apr; 29(2):193-216

     46. Kilgour E, Smith PD. Molecular pathways: fibroblast growth factor signaling: a new therapeutic opportunity in cancer. Clin Cancer Res. 2012 Apr; 18(7):1855-62 

    47. Matsui T, Thitamadee S, Murata T, Kakinuma H, Nabetani T, Hirabayashi Y, et al. Canopy1, a positive feedback regulator of FGF signaling, controls progenitor cell clustering during Kupffer's vesicle organogenesis. Proc Natl Acad Sci USA. 2011 Jun 14; 108(24): 9881-6

    48. Niehrs, C. and H. Meinhardt. Modular feedback. Nature. 2002; 417(6884): 35-6

    49. Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, et  al.  Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 1999; 68:729-77

    50. Allen BL, Rapraeger AC.  Spatial  and  temporal  expression  of  heparan sulfate  in  mouse  development  regulates  FGF  and  FGF  receptor  assembly. J  Cell Biol. 2003; 163(3):637-48

    51. Ornitz DM. FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioessays. 2000 Feb; 22(2):108-12

    52. Kovalenko D, Yang X, Chen PY, Nadeau RJ, Zubanova O, Pigeon K, et al. A role for extracellular and transmembrane domains of Sef in Sef-mediated inhibition of FGF signaling. Cell Signal. 2006 Nov; 18(11):1958-66

    53. Bottcher RT, Pollet N, et al. "The transmembrane protein XFLRT3 forms a complex with FGF receptors and promotes FGF signalling." Nat Cell Biol. 2004; 6(1):38-44

    54. Aranda S, Alvarez M, Turró S, Laguna A, de la Luna S. Sprouty2-mediated inhibition of fibroblast growth factor signaling is modulated by the protein kinase DYRK1A. Mol Cell Biol. 2008 Oct; 28(19):5899-911.

    55. Liddell, H. G. & Scott, R. (1940). A Greek-English Lexicon. H. Jones (Ed.). In Perseus Digital Library. Retrieved Apr. 21, 2012.

    56. The Recycling Rates of Metals: A Status Report 2010, International Resource Panel, United Nations Environment Programme.

    57. Clarkson TW, Nordberg GF and Sager P (Eds.) (1983). “Reproductive and Developmental Toxicity of Metals.” Plenum Press, New York.

    58. Clarkson TW, Nordberg GF, and Sager PR. (1985) Scand. J. WorkEnviron. Health. 11, 145–154.

    59. Diamond GL, Thayer WC and Choudhury H.( 2003). J ToxicolEnviron Health A 66, 2141–2164.

    60. Braun JM, Kahn RS, Froehlich T, et al. (2007). Environ Health Perspect. 114, 1904–1909.

    61. Chia SE, Huijun Z, Theng TM, et al. (2006). Neurotoxicology 28.Epub ahead of print.

    62. Gustavsson P and Gerhardsson L. (2005). Environ. Health Perspec. 113, 491–493.

    63. Muntner P, He J, Vupputuri S, et al. (2003). Kidney Int. 63, 1044–1050.

    64. Lin JL, Lin-Tan DT, Hsu KH, et al. (2003). N. Engl. J. Med. 348, 277–286.

    65. Lin C, Kim R, Tsaih SW, et al. (2004). Environ. Health Perspect. 112, 1147–1151.

    66. Carballo, Rosa; Castiñeras, Alfonso; Domínguez-Martin, Alicia; García-Santos, Isabel; Niclós-Guttiérrez, Juan (2013). "Chapter 7. Solid state structures of cadmium complexes with relevance to biological systems". In Astrid Sigel, Helmut Sigel and Roland K. O. Sigel. Cadmium: From Toxicology to Essentiality. Metal Ions in Life Sciences 11. Springer. pp. 145–189. 

    67. Aki, Masayasu (2013). "Chapter 5. Imaging and sensing of cadmium in cells". In Astrid Sigel, Helmut Sigel and Roland K. O. Sigel. Cadmium: From Toxicology to Essentiality. Metal Ions in Life Sciences 11. Springer. p. 99115. 

    68. Maret, Wolfgang; Moulis, Jean-Marc (2013). "Chapter 1. The Bioinorganic Chemistry of Cadmium in the Context of its Toxicity". In Astrid Sigel, Helmut Sigel and Roland K. O. Sigel. Cadmium: From Toxicology to Essentiality. Metal Ions in Life Sciences 11. Springer. pp. 1–30. 

    69. Wagner U, Staats P, Fehmann HC, Fischer AG, Groneberg DA. Functional airway secretion in a rat model of sulfur dioxide induced chronic obstructive pulmonary disease (COPD). J Occup Med Toxicol. 2005; 1

    70.  Aiba S, Manome H, Nakagawa S, et al. (2003). J. Invest. Dermatol. 120, 390–399.

    71. Brydl LE, Hindsberger C, Kyvik KO, et al. (2004). J. Invest. Dermatol. 123, 1025–1029.

    72. Fischer L, Menne T and Johansen, J. (2005). Contact Dermat. 52, 57–64.

    73. Stridsklev IC, Schaller K-H and Langard S. (2004). Int. Arch. Occup. Environ. Health 77, 587–591.

    74. NIOSH National Institutes for Occupational Safety and Health. (2005b). NIOSH Pocket Guide to Chemical Hazards. Publication No. 2005–151.

    75. Neikov, Oleg D.; Naboychenko, Stanislav; Gopienko, Victor G and Frishberg, Irina V (15 January 2009). Handbook of Non-Ferrous Metal Powders: Technologies and Applications. Elsevier. pp. 371–. ISBN 978-1-85617-422-0. Retrieved 9 January 2012.

    76. Chen Z, Huang, Chi-Yue; Zhao, Meixun; Yan, Wen; Chien, Chih-Wei; Chen, Muhong; Yang, Huaping; Machiyama, Hideaki; Lin, Saulwood (2011). "Characteristics and possible origin of native aluminum in cold seep sediments from the northeastern South China Sea". Journal of Asian Earth Sciences 40 (1): 363–370.

    77. Yumoto, Sakae; Kakimi, Shigeo; Ohsaki, Akihiro; Ishikawa, Akira (2009). "Demonstration of aluminum in amyloid fibers in the cores of senile plaques in the brains of patients with Alzheimer's disease". Journal of Inorganic Biochemistry 103(11): 1579–84

    78. Buchta M, Kiesswetter E, Schäper M, et al. (2005). Environ. Toxicol. Pharmacol. 19, 677–685.

    79. Gupta VB, Anitha S, Hegde ML, et al. (2005). Cell Mol. Life Sci. 62, 143–158.

    80. Chen F, and Shi X. (2002). Crit. Rev. Oncol. Hematol. 42, 105–121.

    81. Leonard SS, Harris GK and Shi X. (2004a). Free Radic. Biol. Med. 37, 1921–1942.

    82. Salnikow K, Su W, Blagosklonny MV, et al. (2000). Cancer Res. 60, 3375–3378.

    83. Toyokuni S. (1998). Biotherapy 11, 147–154.

    84. Lewis TS, Shapiro PS and Ahn NG. (1998). Adv. Cancer Res. 74, 49–139.

    85. Schaeffer HJ and Weber MJ. (1999). Mol. Cell. Biol. 19, 2435–2444.

    86. Fresno Vara JA, Casado E, De Castro J, et al. (2004). Cancer Treat. Rev. 30, 193–204

    87. Semenza GL. (2003). Nat. Rev. Cancer 3, 721–732.

    88. Lando D, Peet DJ, Gorman JJ, et al. (2002). Genes Dev. 16, 1466–1471.

    89. Shishodia S and Aggarwal BB. (2004). Cancer Treat. Res. 119, 139–173.

    90.  Macian F, Garcia–Rodriguez C and Rao A. (2000). EMBO J. 19, 4783–4795.

    91. Macian F, Lopez-Rodriguez C and Rao A. (2001). Oncogene 20, 2476–2489.

    92. Eferl R and Wagner EF. (2003). Nat. Rev. Cancer 3, 859–868.

    93. Hwua YS and Yang JL. (1998). Carcinogenesis 19, 881–888.

    94.  Silbergeld EK. (2003). Mutat. Res. 533, 121–133.

    95. Abdur Rahman, Khalid Khan, Ghanim Al-Khaledi. Lead and IQ: Toxic effects and tau protein. Nov 15, 2012. 61(2):123-134

    96. Neal AP, Stansfield KH, Worley PF, Thompson RE and Guilarte TR. (2010). Lead exposure during synaptogenesis alters vesicular proteins and impairs vesicular release: Potential role of NMDA receptordependent BDNF signaling. Toxicol. Sci. 116, 249–263.

    97. Schütz A, Olsson M, Jensen A, et al. (2005). Int. Arch. Occup. Envriron. Health 78, 35–43.

    98.  Adams JP, Sweatt JD. 2002. Molecular psychology: roles for the ERK MAP kinase cascade in memory. Annu. Rev. Pharmacol. Toxicol. 42(1):135-163.

    99. Suresh C, Dennis AO, Heinz J, Vemuri MC, Chetty CS, 2006. Melatonin protection against lead-induced changes in human neruoblastoma cell cultures. Int. J. Toxicol., 25(6):459-464.

    100.  Ikediobi CO, Badisa VL, Ayuk-Takem LT., et al. (2004). Int. J. Mol. Med. 14, 87–92.

    101. Rockwell P, Martinez J, Papa L., et al. (2004). Cell Signal. 16, 343–353.

    102. Protein tyrosine phosphatases: from genes, to function, to disease Nat. Rev. Mol. Cell Biol., 7 (2006), pp. 833–846

    103. Robertson JD, Orrenius S. Molecular mechanisms of apoptosis induced by cytotoxic chemicals. Crit. Rev. Toxicol. 2000; 30: 609–627.

    104. Ali I, Damdimopoulou P, Stenius U, Adamsson A, Mäkelä SI, Åkesson A, Berglund M, Håkansson H, Halldin K. Toxicol Sci. 2012 May; 127(1):66-75

    105. Zharkov DO and Rosenquist TA. (2002). DNA Repair (Amst) 1,661–670.

    106.  Salnikow K and Zhitkovich A. (2008) Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: Nickel, Chem. Res. Toxicol. 21, 28–44.

    107. Yuan ZQ, Feldman RI, Sussman GE, Coppola D, Nicosia SV and Cheng JQ. (2003) AKT2 inhibition of cisplatin-induced JNK/p38 and Bax activation by phosphorylation of ASK1: Implication of AKT2 in chemoresistance. J. Biol. Chem. 278, 23432–23440.

    108. Chiu A, Katz AJ, Beaubier J, et al. (2004). Mol. Cell Biochem. 255, 181–194

    109. Sarkar B. (1995). Nutrition 11, 646–649.

    110.  Broday L, Peng W, Kuo MH. et al. (2000). Cancer Res. 60, 238–241.

    111. Freitas M, Fernandes E. Metallomics. 2011 Nov;3(11):1238-43.

    112. Fanny Boisle` ve,_w Saadia Kerdine-Ro¨ mer,_ Nathalie Rougier-Larzat,w and Marc Pallardy. J Invest Dermatol 123:494 –502, 2004.

    113. Qin Li, Ting-Chung Suen, Hong Sun, Adriana Arita, Max Costa. Volume 235, Issue 2, 1 March 2009, Pages 191–198

    114. Biao Wang, Wei Xing, Yan Zhao, Xin Deng. Volume 29, Issue 3, May 2010, Pages 308–313

    115. Shi B, Chou K, Haug A. Mol Cell Biochem. 1993 Apr 21; 121(2):109-18.

    116. Ana Ramos-Díaz and SM Teresa Hérnandez-Sotomayor. Plant Signal Behav. 2007 Jul-Aug; 2(4): 263–264.

    117.  Xia0wei Z, Matthias R. Single molecule folding. Current Opinion in Structural Biology 2003, 13:88-97

    118.  Vivian JT, Callis PR. Mechanisms of tryptophan fluorescence shifts in proteins.  Biophys J. 2001 May; 80(5): 2093–2109

    119. Chen Y, Barkley MD.  Toward understanding tryptophan fluorescence in proteins. Biochemistry. 1998; 37:9976–9982

    120. Dobson CM. Principles of protein folding, misfolding and aggregation. Semin Cell Dev Biol. 2004; 15:3-16

    121. Batey S, Nickson AA, Clarke J. Studying the folding of multidomain proteins. HFSP J. 2008 Dec; 2(6): 365–377

    122. Batey S, Scott KA, Clarke J. Complex folding kinetics of a multidomain protein. J Biophys. 2006; 90:2120–30

    123. Berezin MY,  Achilefu S. Fluorescence Lifetime Measurements and biological Imaging. Chem Rev. 2010 May 12; 110(5): 2641–2684

    124. Correa DHA, Ramos CHI. The use of circular dichroism spectroscopy to study protein folding, form and function.  African J Biochem Res. 2009 May, 3 (5): 164-173.

    125.  Dill KA, Shortle D. Denatured states of proteins. Annu Rev Biochem.1991; 60:795-825

    126. Holthauzen LM, Auton M, Sinev M, Rösgen J. Protein stability in the presence of cosolutes. Methods Enzymol. 2011; 492: 61–125

    127. Street TO, Courtemanche N, Barrick D. Protein folding and stability using denaturants. Methods Cell Biol. 2008; 84:295–325

    128. Bennion BJ, Daggett V. The molecular basis for the chemical denaturation of proteins by urea. Proc Natl Acad Sci USA. 2003 April; 29; 100(9):5142–47

    129. Aschi A, Mbarek N, Othman M, Gharbi A. Study of thermally and chemically unfolded conformations of bovine serum albumin by means of dynamic light scattering. J Materials Science and Engineering C. 2008; 28: 594–600

    130. Palomares LA, Estrada-Mondaca S, Ramirez OT Production of recombinant proteins: challenges and solutions. Methods Mol Biol. 2004; 267:15-52

    131. Stryjewska A, Kiepura K, Librowski T, Lochyński S. Biotechnology and genetic engineering in the new drug development. Part I. DNA technology and recombinant proteins. Pharmacol Rep. 2013; 65(5):1075-85

    132. The MJ. Human insulin: DNA technology's first drug. Am J Hosp Pharm. 1989 Nov; 46(11 Suppl 2):S9-11 

    133.  Morrow T. Gaucher's disease treatment option rides on carrot cells' biologic power. Manag Care. 2012 Jun; 21(6):45-6

    134. Plasson C, Michel R, Lienard D, Saint-Jore-Dupas C, Sourrouille C, de March GG, et al. Production of recombinant proteins in suspension-cultured plant cells. Methods Mol Biol. 2009; 483:145-61

    135. Vitale A, Pedrazzini E. Recombinant pharmaceuticals from plants: the plant endomembrane system as bioreactor. Mol Interv. 2005 Aug; 5(4):216-25

    136.Gopal GJ, Kumar A. Strategies for the production of recombinant protein in Escherichia coli. Protein J. 2013 Aug; 32(6):419-25

    137. Caparon MH, Rust KJ, Hunter AK, McLaughlin JK, Thomas KE, Herberg JT, et al. Integrated solution to purification challenges in the manufacture of a soluble recombinant protein in E. coli. Biotechnol Bioeng. 2010 Feb 1; 105(2):239-49

    138. Pytel D, Sliwinski T, Poplawski T, Ferriola D, Majsterek I. Tyrosine kinase blockers: new hope for successful cancer therapy. Anti-Cancer Agents, Curr. Med. Chem. 2009; 9(1):66-76

    139. Kunii K, Davis L, Gorenstein J, Hatch H, Yashiro M, Di Bacco A, et al. FGFR2-amplified gastric cancer cell lines require FGFR2 and Erbb3 signaling for growth and survival. Science Cancer Res. 2008 Apr; 68(7):2340-8

    140. Sorensen HP, Mortensen KK. Advanced genetic strategies for recombinant protein expression in Escherichia coli. Journal of biotechnology. 2005; 115(2):113-28

     

    141. Austin BP, Nallamsetty S, Waugh DS. Hexahistidine-tagged maltose-binding protein as a fusion partner for the production of soluble recombinant proteins in Escherichia coli. Methods Mol Biol. 2009; 498:157-72

    142.  Sorensen HP, Mortensen KK. Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb Cell Fact. 2005 Jan 4; 4(1):1

    143. Meinander NQ, Jeppsson M, Sogaard M. Optimisation of the solubility of the recombinant itk kinase domain in escherichia coli. In: merten ow, editor. Recombinant protein production with prokaryotic and eukaryotic cells - a comparative view on host physiology. The Netherlands: Kluwer Academic Publishers; 2001. p. 159-70

    144. Ryu EK, Cho KJ, Kim JK, Harmer NJ, Blundell TL, Kim KH. Expression and purification of recombinant human fibroblast growth factor receptor in Escherichia coli. Protein Expr Purif. 2006 Sep; 49(1):15-22

    145. Sokolowska-Wedzina A, Borek A, Chudzian J, Jakimowicz P, Zakrzewska M, Otlewski J. Efficient production and purification of extracellular domain of human FGFR-Fc fusion proteins from Chinese hamster ovary cells. Protein Expr Purif. 2014 Apr 13; 99C:50-57

    146. Wang H, Xiao Y, Fu L, Zhao H, Zhang Y, Wan X and et al. High-level expression and purification of soluble recombinant FGF21 protein by SUMO fusion in Escherichia coli. BMC Biotechnol. 2010 Feb 17; 10:14

    147. Goncharuk SA, Goncharuk MV, Mayzel ML, Lesovoy DM, Chupin VV, 
    Bocharov EV and et al. Bacterial Synthesis and Purification of Normal and Mutant Forms of Human FGFR3 Transmembrane Segment. Acta Naturae. 2011 Jul-Sep; 3(3): 77–84

    148. Chen H, Ma J, Li W, Eliseenkova AV, Xu C, Neubert TA, et al. A molecular brake in the kinase hinge region regulates the activity of receptor tyrosine kinases. Molecular cell. 2007; 27(5):717-30

    149. Zankl A, Jaeger G, Bonafee L, Boltshauser E, Superti-Furga A. Novel mutation in the tyrosine kinase domain of FGFR2 in a patient with Pfeiffer syndrome. American Journal of Medical Genetics Part A. 2004; 131(3):299-300

    150. Pollock PM, Gartside MG, Dejeza LC, Powell MA, Mallon MA, Davies H, et al. Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene. 2007; 26(50):7158-62

     

    151- Moghadasi M, Ilghari D, Gheibi N, SIRATI SM, Khabbaz F, Piri H. Expression, purification and evaluation of the recombinant human fibroblast growth factor receptor 2b kinase domain. JQUMS. 2014; 18(2): 4–11.

     

    152- TIETZ Textbook of Clinical Chelllistry AND Molecular Diagnostics / editors, Carl A. Burtis … [et al.]. – 4rd ed. 2006. Chapter 56 Reference Information for the Clinical Laboratory, Table 56-1: 2255, 58, 82.

     

    153- Bharat Bhushan; Ajay Pal; Archna Singh. Effect of lead on protein dissolution and phosphate mobilization in germinating oat [Avena sativa (L.) cv. HJ-8] seeds. Indian Journal of Agricultural Research 2013 Vol. 47 No. 5 pp. 402-410.  0367-8245

    154- Kasperczyk S1, Slowinska-Lozynska L, Kasperczyk A, Wielkoszynski T, Birkner E. The effect of occupational lead exposure on lipid peroxidation, protein carbonylation, and plasma viscosity. Toxicol Ind Health. 2013 May 24.

    155- Ivanina AV, Cherkasov AS, Sokolova IM. Effects of cadmium on cellular protein and glutathione synthesis and expression of stress proteins in eastern oysters, Crassostrea virginica Gmelin. J Exp Biol. 2008 Feb;211(Pt 4):577-86. doi: 10.1242/jeb.011262.

    156- Notarachille G, Arnesano F, Calò V, Meleleo D. Heavy metals toxicity: effect of cadmium ions on amyloid beta protein 1-42. Possible implications for Alzheimer's disease. Biometals. 2014 Apr;27(2):371-88. doi: 10.1007/s10534-014-9719-6. Epub 2014 Feb 21.

    157- Neill D, Leake A, Hughes D, Keith AB, Taylor GA, Allsop D, Rima BK, Morris C, Candy JM, Edwardson JA. Effect of aluminium on expression and processing of amyloid precursor protein. J Neurosci Res. 1996 Nov 15;46(4):395-403.

    158- Gunnar F. Nordberg. Bruce A. Fowler. Monica Nordberg and Lars T. Friberg. Handbook on the Toxicology of Metals. Third Edition. Chapter 11; Page 204; Part 6.

    159. Kelly SM, Price NC. The use of circular dichroism in the investigation of protein structure and function. Curr Protein Pept Sci. 2000 Dec; 1(4):349-84

    160. Yousefi  R,  Imani1  M,  Ardestani  SK,  Saboury   AA,  Gheibi  N,  Ranjbar  B. Human  Calprotectin:  Effect  of  Calcium  and  Zinc  on  its  Secondary  and  Tertiary Structures, and Role of pH in its Thermal Stability. Acta Biochimica et Biophysica Sinica. 2007; 39(10): 795–802

    161. Jana S, Chaudhuri TK, Deb JK. Effects of guanidine hydrochloride on the conformation and enzyme activity of streptomycin adenylyltransferase monitored by circular dichroism and fluorescence spectroscopy. Biochemistry (Mosc). 2006 Nov; 71(11):1230-7

    162. Kishore D, Kundu S, Kayastha AM. Thermal, Chemical and pH Induced Denaturation of a Multimeric β-Galactosidase Reveals Multiple Unfolding Pathways. PLoS ONE. 2012 Nov; 7(11): e50380

    163. Siddiqui KS, Poljak A, De Francisci D, Guerriero G, Pilak O, Burg D, et al. A chemically modified alpha-amylase with a molten-globule state has entropically driven enhanced thermal stability. Protein Eng Des Sel. 2010 Oct; 23(10):769-80

     

    164- Hitzfeld B1, Planas-Bohne F, Taylor D. The effect of lead on protein and DNA metabolism of normal and lead-adapted rat kidney cells in culture. Biol Trace Elem Res. 1989 Jul-Sep;21:87-95.

    165- Goering PL. Lead-protein interactions as a basis for lead toxicity. Neurotoxicology. 1993 Summer-Fall; 14(2-3): 45-60.

    166- Mingmao Chen, Hao Guo, Yan Liu and Qiqing Zhang. Journal of Biochemical and Molecular Toxicology. Volume 28, Issue 6, pages 281–287, June 2014

    167- N Mohan; T Alleyne; A Adogwa. The effects of ingested aluminium on brain cytochrome oxidase activity. West Indian Medical Journal. Print version ISSN 0043-3144. West Indian med. j. vol.58 no.5 Mona Nov. 2009

    168- Rizwanul Haq, M. Farhanullah Khan and Ehteshamul Haq. Heavy Protein Alteration under the Effects of Lead Acetate in Bactrocera cucurbitae. Journal of Basic & Applied Sciences, 2012, 8, 297-301

    169- Apostoli P, Romeo L, De Matteis MC, Menegazzi M, Faggionato G, Vettore L. Effects of lead on red blood cell membrane proteins. International Archives of Occupational and Environmental Health (Impact Factor: 2.1). 02/1988; 61(1-2):71-5. DOI: 10.1007/BF00381610



تحقیق در مورد پایان نامه بیان و تخلیص پروتئین نوترکیب FGFR2b و بررسی تغییرات ساختاری آن بر اثر برهمکنش با فلزات سمی, مقاله در مورد پایان نامه بیان و تخلیص پروتئین نوترکیب FGFR2b و بررسی تغییرات ساختاری آن بر اثر برهمکنش با فلزات سمی, پروژه دانشجویی در مورد پایان نامه بیان و تخلیص پروتئین نوترکیب FGFR2b و بررسی تغییرات ساختاری آن بر اثر برهمکنش با فلزات سمی, پروپوزال در مورد پایان نامه بیان و تخلیص پروتئین نوترکیب FGFR2b و بررسی تغییرات ساختاری آن بر اثر برهمکنش با فلزات سمی, تز دکترا در مورد پایان نامه بیان و تخلیص پروتئین نوترکیب FGFR2b و بررسی تغییرات ساختاری آن بر اثر برهمکنش با فلزات سمی, تحقیقات دانشجویی درباره پایان نامه بیان و تخلیص پروتئین نوترکیب FGFR2b و بررسی تغییرات ساختاری آن بر اثر برهمکنش با فلزات سمی, مقالات دانشجویی درباره پایان نامه بیان و تخلیص پروتئین نوترکیب FGFR2b و بررسی تغییرات ساختاری آن بر اثر برهمکنش با فلزات سمی, پروژه درباره پایان نامه بیان و تخلیص پروتئین نوترکیب FGFR2b و بررسی تغییرات ساختاری آن بر اثر برهمکنش با فلزات سمی, گزارش سمینار در مورد پایان نامه بیان و تخلیص پروتئین نوترکیب FGFR2b و بررسی تغییرات ساختاری آن بر اثر برهمکنش با فلزات سمی, پروژه دانشجویی در مورد پایان نامه بیان و تخلیص پروتئین نوترکیب FGFR2b و بررسی تغییرات ساختاری آن بر اثر برهمکنش با فلزات سمی, تحقیق دانش آموزی در مورد پایان نامه بیان و تخلیص پروتئین نوترکیب FGFR2b و بررسی تغییرات ساختاری آن بر اثر برهمکنش با فلزات سمی, مقاله دانش آموزی در مورد پایان نامه بیان و تخلیص پروتئین نوترکیب FGFR2b و بررسی تغییرات ساختاری آن بر اثر برهمکنش با فلزات سمی, رساله دکترا در مورد پایان نامه بیان و تخلیص پروتئین نوترکیب FGFR2b و بررسی تغییرات ساختاری آن بر اثر برهمکنش با فلزات سمی

ثبت سفارش
تعداد
عنوان محصول
بانک دانلود پایان نامه رسا تسیس